APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Cluster No.10 for PG Programs

(Engineering Colleges in Kannur, Wayanad & Kasaragod Districts)

Curriculum, Scheme of Examinations and Syllabi for M. Tech. Degree Program with effect from Academic Year 2015 - 2016

Mechanical Engineering

M. Tech.

in

Thermal Engineering

(No. of Credits : 66)

CONTENTS

Slot	Course Code	Course Name	Semester	Page
А	10ME6301	Advanced Engineering Mathematics	Ι	1
В	10ME6303	Advanced Engineering Fluid Dynamics	Ι	2
С	10ME6305	Advanced Heat Transfer	Ι	3
D	10ME6307	Advanced Thermodynamics and Combustion	Ι	5
Ē	10ME6313	Refrigeration Engineering	Ι	6
Ē	10ME6415	Hydraulic, Pneumatic And Fluid Controls	Ī	8
Ē	10ME6317	Thermal Environmental Engineering	Ι	10
E	10ME6319	Solar Thermal Engineering	Ι	11
Е	10ME6321	Boundary Layer Theory and Turbulence	Ι	12
S	10GN6001	Research Methodology	Ι	14
Т	10ME6409	Seminar I	Ι	16
U	10ME6411	Engineering Software Lab	Ι	17
А	10ME6402	Internal Combustion Engine	II	18
В	10ME6404	Advanced Power Plant Engineering	II	19
С	10ME6306	Measurements in Thermal Engineering	II	21
D	10ME6114	Soft Computing Techniques	II	22
D	10ME6116	Design of Experiments	Π	23
D	10ME6118	Management Information System	II	25
D	10ME6122	Quality and Reliability Engineering	II	26
D	10ME6124	Project Engineering and Management	II	28
Е	10ME6326	Design of Heat Transfer Equipments	II	29
E	10ME6328	Renewable Energy Systems	II	31
E	10ME6432	Industrial Refrigeration System	II	32
E	10ME6334	Advanced Gas Dynamics	II	34
E	10ME6436	Computational Fluid Flow and Heat Transfer	II	35
V	10ME6408	Mini Project	II	37
U	10ME6412	Advanced Heat Transfer Lab	II	38
Α	10ME7305	Cryogenic Engineering	III	40
A	10ME7307	Design and Analysis of Turbomachines	III	41
A	10ME7309	Convection and Two-phase Flow	III	43
A	10ME7411	Gas Turbines	III	45
A	10ME7313	Cogeneration and Waste Heat Recovery Systems	III	46
B	10ME7315	Modern Energy Conversion Systems	III	48
B	10ME7417	Steam Turbines	III	49
B	10ME7419	Air conditioning and Ventilation	III	51
B	10ME7421	Finite Element Analysis for Heat Transfer	III	52
B	10ME7323	Energy Conservation and Heat Recovery Systems	III	53 54
T V	10ME7401	Seminar II Project (Phase I)	III III	54 56
V V	10ME7403 10ME7404	Project (Phase I) Project (Phase II)	III IV	56 58
v	101112/404	1 10juur (1 11asu 11)	1 V	20

SEMESTER 1

t	umber		Marks							Marks	En Seme Examir	ster	larks	its
Slot	Course Number	Name	L-T-P	Internal	Marks	Duration (hours)	Total Marks	Credits						
Α	10ME6301	Advanced Engineering Mathematics	3-1-0	40	60	3	100	4						
В	10ME6303	Advanced Engineering Fluid Dynamics	3-0-0	40	60	3	100	3						
С	10ME6305	Advanced Heat Transfer	3-0-0	40	60	3	100	3						
D	10ME6307	Advanced Thermodynamics and Combustion	3-0-0	40	60	3	100	3						
Е	10ME6XX	Elective I	3-0-0	40	60	3	100	3						
S	10GN6001	Research Methodology	0-2-0	100			100	2						
Т	10ME6409	Seminar I	0-0-2	100			100	2						
U	10ME6411	Engineering Software Lab	0-0-2	100			100	1						
		TOTAL	15-3-4	500	300	-	800	21						

Elective I

- 10ME6313 Refrigeration Engineering
- 10ME6415 Hydraulic, Pneumatic and Fluid Controls
- 10ME6317 Thermal Environmental Engineering
- 10ME6319 Solar Thermal Engineering
- 10ME6321 Boundary Layer Theory and Turbulence

SEMESTER 2

Examination Slot	Course Number	Name	L-T-P	Internal Marks	En Seme Examir Warks	ster	Total Marks	Credits
Α	10ME6402	Internal Combustion Engine	3-1-0	40	60	3	100	4
В	10ME6404	Advanced Power Plant Engineering	3-0-0	40	60	3	100	3
С	10ME6306	Measurements in Thermal Engineering	3-0-0	40	60	3	100	3
D	10ME6xxx	Elective II	3-0-0	40	60	3	100	3
Е	10ME6xxx	Elective III	3-0-0	40	60	3	100	3
V	10ME6408	Mini Project	0-0-4	100			100	2
U	10ME6412	Advanced Heat Transfer Lab	0-0-2	100			100	1
		TOTAL	15-1-6	400	300	-	700	19

Elective II

Elective III

10ME6114	Soft Computing Techniques	10ME6326	Design of Heat Transfer Equipments
10ME6116	Design of Experiments		Renewable Energy Systems
10ME6118	Management Information System	10ME6432	Industrial refrigeration system
10ME6122	Quality and Reliability Engineering	10ME6334	Advanced Gas Dynamics
10ME6124	Project Engineering and Management	10ME6436	Computational Fluid Flow and
			Heat Transfer

Examination Slot	Course Number	Name	L-T-P	Internal Marks	En Seme Examin Sau Examin W	ster	Total Marks	Credits
Α	10ME7xxx	Elective IV	3-0-0	40	60	3	100	3
В	10ME7xxx	Elective V	3-0-0	40	60	3	100	3
Т	10ME7401	Seminar II	0-0-2	100			100	2
V	10ME7403	Project (Phase I)	0-0-12	50			50	6
		TOTAL	6-0-14	230	120	-	350	14

SEMESTER 3

Elective IV

10ME7305	Cryogenic Engineering
10ME7307	Design and Analysis of Turbomachines
	Convection and Two-Phase Flow
10ME7411	Gas Turbines
10ME7313	Cogeneration and Waste Heat

Recovery Systems

Elective V

10ME7315	Modern Energy Conv	version Systems
----------	--------------------	-----------------

10ME7417 Steam Turbines

10ME7419 Air Conditioning and Ventilation

- 10ME7421 Finite Element Analysis for Heat Transfer Energy Conservation and Heat
- 10ME7323 Recovery Systems

Examination Slot	Course Number	Name	L-T-P	Internal Marks	En Seme Examin Syne W	ster	Total Marks	Credits
V	10ME7404	Project (Phase II)	0-0-23	70	30		100	12
		TOTAL	0-0-23	70	30	-	100	12

TOTAL NUMBER OF CREDITS: 66

SEMESTER 1

	Course Name	L-T-P: Credits	Year of Introduction					
10ME6	301 ADVANCED ENGINEERING MATHEMATICS	3-1-0: 4	2015					
Basic kr Course of The cou value pr and its n Syllabus Methods	Course Prerequisites Basic knowledge of advanced calculus including methods for solving ODEs and basics of PDEs Course objectives The course is designed to teach students various techniques to solve PDEs including boundary value problems and introduce them to the important mathematical tool of Calculus of Variations and its methods. Syllabus Methods of solutions of First Order PDEs and important second order PDEs viz. Heat, Wave and							
Variatio	equations.Fourier Transform Methods,Schwarz-Christoffel Tran n,Numerical Methods for PDEs,Finite Difference in polar coordina							
1. Mi Eq 2. Gu 3. Int 4. Ad 5. Int 6. Ty Ph 7. Pa Expected	 Tychonov.A.N and Samarskii.A.A. Partial Differential Equations of Mathematical Physics.Holden-Day,1964 Partial Differential Equations-Sneddon. 							
	dents are expected to develop knowledge about a variety of atical models in the form of PDEs.	techniques	s for solving					
	Course Plan							
Module	Content	Hours	Semester Exam Marks (%)					
1	First order PDEs .Linear Equations,Lagrange method, Cauchy method,Charpits' method, Jacobian method.Second order PDEs,Classifications, Formulations and method of solutions Wave equation, Heat equations and Laplace equation.	r 9	15					
п	Fourier Transform method for solving PDEs,relevant formulae for transform of partial derivatives,one dimensional heat conduction problems in infinite and semi infinite rod,Laplace equation,Poisson Equation.							
	First Internal Examination							
III	Concept of variation and its properties, Euler' equation, Functionals dependent on first and higher orde derivatives, Functionals dependent on functions of several independent variables, Problems with moving boundaries, Direct	r 9	15					

	methods, Ritz and Kantorovich methods.		
IV	Schwarz-Christoffel Transformation, Transformation of boundaries in parametric form, Physical applications, Fluid flow problems, Heat flow problems.	7	15
	Second Internal Examination		
V	Numerical methods for one dimensional parabolic equation,Explicit and Crank-Nicolson Schemes,Thomas Algorithm,Weighted average approximation,Dirichlet and Neumann conditions,Two dimensional parabolic equations,ADI method.	9	20
VI	Solutions of Laplace and Poisson equations in rectangular region, Finite difference in polar coordinates, Formule for derivatives near curved boundary while using a square mesh.	7	20
	Cluster Level End Semester Examination		

Course No.	Course Name	L-T-P: Credits	Year of Introduction				
10ME6303	ADVANCED ENGINEERING FLUID DYNAMICS	3-0-0: 3	2015				
Course Prerequisites							
	e of Fluid Mechanics and Vector calculus at UG Level						
Course Objectiv							
	he basic concept and principles of modeling and analysi ions of the same.	ng thermo-	fluid systems,				
Syllabus							
	fluid dynamics, Differential and integral forms of conser-	-					
-	s, Non-dimensionalisation of N-S equations and order	-	-				
	of N-S equations, Boundary layer theory, Prandtl bound						
	umintegral equations, Introduction to turbulent flow, Rey						
• •	Turbulence modelling, Turbulent flowthrough pipes and	ducts, Turb	oulent jets and				
wakes.							
Expected Outcom			a · 1 · 1 · ·				
	re expected to have a sound understanding of the co						
	capability of applying this in the modeling and analyzing	g of various	s thermo-fluid				
systems in engi	neering.						
References:	Winnows Elvid Flow, Third Edition McCrow Hill 2004	<u></u>					
	., Viscous Fluid Flow, Third Edition, McGraw-Hill, 2006 ing, K.Gersten, Boundary Layer Theory, 8 th Edition, Spri						
	ou, T. C., Georgiou, G. C., and Alexandrou, A. N., V	•					
Press, 2000		iscous i lui	u now, ene				
· · · · ·							
	blishing House, 2005.		cond Danioli,				
5. John F. Do	uglas, Janusz M. Gasiorek, John A. Swaffield, Lynne B acation 2009	. Jack, Flui	id Mechanics,				

- 6. Yunus A. Cengel, John M. Cimbala, Fluid Mechanics, 2nd Edition, Tata McGraw Hill Education Pvt. Ltd., 2010.
- 7. Pijush K. Kundu, Ira M. Cohen, Fluid Mechanics, Academic Press, 2004.

Course Plan				
Module	Content	Hours	Semester Exam Marks (%)	
I	Introduction to fluid dynamics: Review of fundamental concepts,Reynolds transport equation, Stokes hypothesis,Integral and differential forms of continuity,momentum, and energy equations.	10	15	
II	Navier-Stokes equations and boundary conditions, Non- dimensionalisation of N-S equations and order of magnitude analysis, dimensionless parameters and their significance.	7	15	
	First Internal Examination			
ш	Exact solutions of incompressible Navier-Stokes equations : Couette flow, flow between rotating cylinders, Stokes first problem, fullydeveloped flow through ducts, Low Reynolds number flows.	8	15	
IV	Boundary layer theory: Prandtl boundary layer equations, Blasius solution and other similarity solutions of the laminar boundary layer, Karman momentum integral equations, prediction of boundary layer separations.	9	15	
	Second Internal Examination			
V	Introduction to turbulent flow :Mean motion and fluctuation, time averaged turbulent flow equations, Reynolds stresses, boundary layer equations, boundary conditions	8	20	
VI	Turbulence modelling: Shear stress models, mixing length hypothesis, k-E model, universal velocity distribution laws, flow through pipes and ducts, turbulent jets and wakes	9	20	
	Cluster Level End Semester Examination			

Course No.	Course Name	L-T-P: Credits	Year of Introductio n
10ME6305	ADVANCED HEAT TRANSFER	3-0-0: 3	2015
Syllabus	abaracteristics of Fing Stoody state conduction in a	no and two	dimonsional

Heat transfer characteristics of Fins. Steady state conduction in one and two dimensional systems. Unsteady state conduction. Forced convection equations. Approximate and exact analysis of boundary layers. Free convection.Radiative properties of materials. Radiative exchange between two surfaces.Radiation exchange in an enclosure. Solar and gas radiation

Expected Outcomes

Deepens and broadens the understanding of heat transfer.

References:

- 1. Yunus A Cengel, Heat and Mass Transfer, A practical approach, Tata McGraw-Hill, 2007.
- 2. Holman, J. P., Heat Transfer, Ninth Edition, Tata McGraw-Hill, 2002.
- 3. D. Poulikakos: Conduction Heat Transfer, Prentice Hall, 1994.
- 4. Fundamentals of Heat and Mass Transfer- Incropera F P and Dewitt D P
- 5. V.S. Arpaci: Conduction Heat Transfer, AddisionWesly, 1996
- 6. H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids, Oxford University Press, 1959.
- 7. Bejan: Convection Heat Transfer, J. Wiley, 2007
- 8. M.F. Modest: Radiative Heat Transfer, McGraw Hill, 1993
- 9. Siegel and Howell, Thermal radiation Heat transfer, McGraw Hill,
- Kays and Crawfard., Convective heat and mass transfer, Mc-GrawHil Nations Industrial Development Organization, Vienna. Yoder and Witczak, 'Principles of Pavement Design', John Wiley, 1975

Course Plan				
Module	Content	Hours	Semester Exam Marks (%)	
I	Heat transfer characteristics of straight, annular, and pin fins of uniform and non-uniform cross sections. Steady state conduction with uniform internal heat generation-temperature distribution and heat flux for regular solids with uniform heat generation-temperature dependent and location dependent heat generation	4	15	
	steady state conduction in two dimensional systems. Analytical and numerical methods.	4		
	Unsteady state conduction: unsteady state heating or cooling- Newtonian heating or cooling- Heating or cooling of finite and semi-infinite slabs with negligible surface resistance for different boundary conditions	6		
Π	Solutions of heating or cooling of regular solids with comparable internal and external resistance by simple analyticalmethods and use of charts-periodic variation of surface temperature of infinitely thick wallsneglecting and considering surface resistances.	4	15	
	First Internal Examination			
ш	Forced convection: Equations of motion of a viscous fluid. General equation of energy transport - 2D boundary layer equation for momentum and energy transport. Laminarflow heat transfer: Exact solutions of the 2D boundary layer momentum and energy equations.	4	15	
IV	Approximate calculations of the boundary layer by the momentum and energy integral equations. Turbulent flow heat transfer: Analog methods- Reynolds, Prandtl and von Karman.	6	15	
	Second Internal Examination			

	Free convection: Solutions of the boundary layer equations for a vertical plate and a horizontal cylinder – approximate solutions-freeconvection with a turbulent boundary layer.	4	
V	Radiation: Radiative properties of real materials Radiative properties of metals and opaque non-metals-modifications of spectral characteristics. Exchange of radiant energy between black isothermal surfaces. Radiative exchange between two surfaces-	5	20
VI	methods for evaluating configuration factors –radiation in a black enclosure, Radiation exchange in an enclosurecomposed of diffuse-gray surfaces Radiation between finite areas-radiation between infinitesimal areas,	4	20
	Solar and gas radiation.	3	
	Cluster Level End Semester Examination		

Course No.	Course Name	L-T-P: Credits	Year of Introduction
10ME6307	ADVANCED THERMODYNAMICS AND COMBUSTION	3-0-0: 3	2015
Course Prerequi	isites		
Basic knowledg	ge of thermodynamics at UG Level.		
Course Objectiv	es		
To understand	the principles of combustion and to get broad knowledge	in thermody	namics.
Syllabus			
Introduction to	thermodynamics, Second law of thermodynamics and	nd concept	of chemical
1 ,	emistry of Combustion, Physics of Combustion, Premixed	dFlame,Dif	fusion Flame,
Combustion and	d Environment.		
Expected Outco			
	re expected to Have a sound understanding of the princ	ciples of co	mbustion and
uderstand the c	omplexities of industrial combustion processes		
References			
	ynamics - An Engineering Approach, YunusCengel and	1 Michael I	Boles,7th Ed.,
Tata McC			
	Ingineering Thermodynamics, Robert Balmer, Elseveir.		
	I Thermodynamics for Engineers, Winterbone, John Wiley	•	
	l Thermodynamics for Engineers, Kenneth Wark, McGrav		
5. Fundamen Wiley	ntals of Engineering Thermodynamics, Michael Moran	, Howard	Shapiro, John
5	ntal s of Combust ion, D. P. Mishra, Prentice Hall of Ind	ia, New De	1 hi, 2008.
	of Combustion, Kuo K. K., John Wiley and Sons.	<i>,</i>	-
	Course Plan		

Module	Content	Hour s	Semester Exam Marks (%)
Ι	Introduction to thermodynamics: Thermodynamics-equation of state, properties of gas mixtures, First law analysis of reacting systems, enthalpy of formation and heat of reaction, stoichometric and equivalence ratio, adiabatic flame temperature.	7	15
II	Second law of thermodynamics and concept of chemical equilibrium, Gibbs free energy and the equilibrium constant of a chemical reaction (VantHofts equation). Calculation of equilibrium Composition of a chemical reaction.	8	15
	First Internal Examination		
ш	Chemistry of Combustion: Basic Reaction Kinetics, Elementary reactions, Chain reactions, Multistep reactions, simplification of reaction mechanism, Global kinetics.	5	15
111	Physics of Combustion: Fundamental laws of transport phenomena, Conservations Equations, Transport in Turbulent Flow.	5	
IV	Premixed Flame: One dimensional combustion wave, Laminar premixed flame, Burning velocity measurement methods, Effects of chemical and physical variables on Burning velocity, Flame extinction, Ignition, Flame stabilizations, Turbulent Premixed flame.	8	15
	Second Internal Examination		
V	Diffusion Flame: Gaseous Jet diffusion flame, Liquid fuel combustion, Atomization, Spray Combustion, Solid fuel combustion.	7	20
VI	Combustion and Environment: Atmosphere, Chemical Emission from combustion, Quantification of emission, Emission control methods.	6	20
	Cluster Level End Semester Examination		

Course Name	L-T-P: Credits	Year of Introduction			
REFRIGERATION ENGINEERING	3-0-0: 3	2015			
Course Prerequisites					
e of principles of refrigeration, basic thermodynamics, a	t UG Level				
es					
Course Objectives The course is designed to provide a strong background in the concept of refrigeration. Sound					
	REFRIGERATION ENGINEERING sites ge of principles of refrigeration, basic thermodynamics, a es	Course Name Credits REFRIGERATION ENGINEERING 3-0-0: 3 sites ge of principles of refrigeration, basic thermodynamics, at UG Level es State			

knowledge in vapour compression and vapour absorption system and operations

Syllabus

Vapour Compression refrigeration systems, multi stage refrigeration systems, Cascade systems, Sorption refrigeration, Classification of sorption systems, Absorption and adsorption systems, Dry and wet types; Working principles of sorption refrigeration system, Low temperature refrigeration systems, Air cycle refrigeration, Other methods of refrigeration, Refrigerants, Environmental impact of refrigerants

Expected Outcomes

The students are expected to gain knowledge of advanced refrigeration, sorption refrigeration, and environmentally benign refrigerants. .`

References

- 1. C.P. Arora, Refrigeration and Air conditioning, Tata McGraw Hill, 2000.
- 2. Wilbert F. Stoecker, *Refrigeration and Air conditioning*, McGraw Hill, Inc 1982.
- 3. Roy. J Dossat, *Refrigeration and Air conditioning*
- 4. W.BGosney, Principles of Refrigeration, Cambridge University Press, 1982
- 5. K.E Herold, R. Radermacher and S. A. Klein, Absorption Chillers and Heat Pumps, CRC Press, 1996
- 6. Manohar Prasad, *Refrigeration and Air conditioning*, New Age 1999
- 7. Carriers Handbook system Design of Air

	Course Plan			
Module	Content	Hours	Semester Exam Marks (%)	
Ι	Recapitulation of Thermodynamics, Thermodynamics process pertaining to refrigeration and air conditioning. First and Second law applied to refrigerating machines, Carnot principles, COP, EER,Reverse Carnot Cycle, Different methods of refrigeration,	6	15	
п	Refrigerants - Classification-designation of refrigerants - selection criterion – Thermodynamic requirements - Chemical-physical requirements - Secondary refrigerants –Environmental impact of Refrigerants Global warming, Ozone depletion, Alternate refrigerants, future refrigerants	8	15	
ш	Vapour compression systems - Limitations of reversed Carnot cycle with vapour as refrigerant –Vapour compression cycle - Enthalpy pressure diagrams - Suction cycle for maximum COP - Effect of operating conditions - Effect of evaporator pressure - Condenser pressure-suction vapour superheat - Liquid sub cooling -using liquid vapour regenerative heat exchanger - Actual vapour compression system - Complete vapour compression system.	9	15	
	First Internal Examination			
IV	Advanced vapor compression systems, multi pressure systems, Flash gas removal, Two evaporator and one compressor systems. One evaporator and two compressor systems, other combinations of compressors, evaporators and condensers, Low temperature refrigeration, cascade systems.	8	15	
	Second Internal Examination			

V	Thermal compression against mechanical compression – Vapour absorption refrigeration systems - Maximum COP - Common refrigerant absorbent systems - Modification to simple vapour absorption systems - Using liquid-liquid heat exchanger - Using analyzer - Actual vapour absorption systems – and its representation on enthalpy composition diagram - Absorption system calculations - Lithium bromide water systems- Triple Fluid systems	9	20
VI	Air Refrigeration Systems: Thermodynamic processes, priority criteria and suitability of air refrigeration system. Types of Air refrigeration system. Lubrication in refrigeration system - Non conventional refrigeration systems – Thermo electric - Pulse tube - Vortex tube refrigeration systems - Ejector compression systems	8	20
	Cluster Level End Semester Examination		

Course No.	Course Name	L-T-P: Credits	Year of Introduction
10ME6415	HYDRAULIC, PNEUMATIC AND FLUID CONTROLS	3-0-0: 3	2015
Course Prerequi			
Basic knowledg	ge of hydraulics, pneumatics and various fluid control dev	rices in UG	level.
Course Objectiv	es		
By completing	this module, the student should be able to:		
• Understar	nd the main components of the hydraulic and pneumatic sy	ystems	
• Design an	d understand the electro-hydraulic and electro-pneumatic	circuits.	
• Design hy	draulic and pneumatic circuits.		
Classify v	arious fluidic devices and their area of application.		
Syllabus			
Introduction to h	ydraulic/pneumatic devices-Types of hydraulic motors	and their c	haracteristics-
Hydraulic valves	s:-JIC symbols of hydraulic/pneumatic components-Ty	pical hydra	aulic circuits-
Design of hydra	ulic/pneumatic equipment/circuit- Drawing the circuit	using stand	lard symbols-
Fluidics: Introduc	ction to fluidic devices		
Expected Outco	mes:		
Students will be	able to:		
Define various	concepts of hydraulics. Classify the accessories use in h	ydraulic sy	stem. Identify
various valves	and auxiliaries. Rectify the problems; Describe the constr	uctional def	ails of pumps
and motors. C	Classify the hydraulic circuits. Develop Hydraulic C	ircuits. Ide	entify various
	pneumatic system. Differentiate pneumatic and hydr		
identify or pred	lict the flow regime in a given engineering system based	d on consid	eration of the
governing grou	ps.		
References			
1. Pippenger, Jol	nn J &Koff Richard M: Fluid Power Controls		

	ger , John J & Hicks, Tyler G: Industrial Hydraulics		
	er, Joseph M: Fluid Amplifiers er, Joseph M & Silas Katz: Design Theory of Fluidic components		
	inz Zoebl, Techn: Fundamentals of Hydraulic circuitry		
	Course Plan		
Module	Content	Hours	Semester Exam Marks (%)
I	Introduction : Introduction to hydraulic/pneumatic devices, their applications and characteristics, comparison of electric, hydraulic and pneumatic devices. Pumps and motors: principles of working, range of displacement and pressures. Fixed and variable discharge pumps, gear pumps, internal gear pump, serotor pump, vane pump/piston pump, axial piston pump, swash plate pump, bent-axis pump.	12	15
п	Hydraulic devices and their accessories: Types of hydraulic motors and their characteristics. Accessories: Hydraulic accumulators, intensifiers, filters, heater, cooler, tank.	6	15
	First Internal Examination		
ш	Types of hydraulic valves and their operation: Hydraulic valves: Stop valve, non-return valve, relief valve, sequence valve, counter balance valve, pressure reducing valve, flow control valves, direction control valves, their principles of operations and applications. JIC symbols of hydraulic/pneumatic components. Properties of commonly used hydraulic fluids	8	15
IV	Typical hydraulic circuits : Examples of practical circuits like those used in machine tools, riveter, pneumatic hammer, hydraulic pressure, power steering.	6	15
	Second Internal Examination		
V	Designing parameters: Design of hydraulic/pneumatic equipment/circuit to fulfil a given set of requirements like a sequence of operations, load conditions, speed of operation etc. Specifying the components and their rating. Drawing the circuit using standard symbols.	6	20
VI	Introduction to fluidics: Introduction to fluidic devices, principle of working of common fluidic devices like wall attachment devices, proportional amplifiers, turbulent amplifiers, fluidic logic devices. Examples of applications of fluidic devices like edge control of steel plate in rolling mills, tension control.	10	20

Cluster Level End Semester Examination

Course	No.	Course Name	L-T-P: Credits	Year of Introduction
10ME6	5317	THERMAL ENVIRONMENTAL ENGINEERING	3-1-0: 4	2015
Course P	-	sites e of Thermodynamics, Refrigeration, Heat transfer at UG/	DG Loval	
Course C			U Level.	
The cou	urse is d	esigned to provide students a strong background in the Air inciples and design of air conditioning systems.	condition	ing practices,
Syllabus	P			
Air con Summe	r Air C	g -Properties of air- Applied psychrometry- Estimation of Conditioning Processes-Winter Air Conditioning Process r Handling Equipments- Air Conditioning Systems.		
Expected	-			
application the generation	ons of the al princi	provide a gist of the theory behind the Air conditioning and eory to design of an Air conditioning system. The students ples of psychrometry and applied psychometrics in Air con d estimation, equipment selection, duct design etc.	are expect	ted to apply
 Norm Lever 	keld, J. I an C. Ha hagen,	L., Thermal Environmental Engineering, Second Edition, P arris, N. C., Modern Air Conditioning Practice, Third edition J. L., Spethmann, D. H., Heating Ventilating and Air con Graw Hill1993.	n, McGra	w-Hill, 1985.
		Course Dian		
		Course Plan		
Module		Course Flan	Hours	
	cond		r	s Exam Marks (%)
Module	cond cond Prop Ther	Content conditioning: Introduction-physiological basis for a itioning-classification of air conditioning systems-A itioning system components. erties of air: Applied psychrometry - Psychrometric chart mal comfort, effective temperature, comfort chart – Insid	r r 3	Exam
	cond cond Prop Therr desig Estin air co	Content conditioning: Introduction-physiological basis for a itioning-classification of air conditioning systems-As itioning system components. erties of air: Applied psychrometry - Psychrometric chart mal comfort, effective temperature, comfort chart – Insid n condition, ventilation standards nation of Air Conditioning Loads: Summer and Winte onditioning load-load classification- heating and cooling	r 3 	s Exam Marks (%)
I	cond cond Prop Thern desig Estin air cu heat	Content conditioning: Introduction-physiological basis for a itioning-classification of air conditioning systems-A itioning system components. erties of air: Applied psychrometry - Psychrometric chart mal comfort, effective temperature, comfort chart – Insid n condition, ventilation standards nation of Air Conditioning Loads: Summer and Winter	r 3 - 5 r ;;	S Exam Marks (%) 15
I	cond cond Prop Thern desig Estin air cu heat	Content conditioning: Introduction-physiological basis for a itioning-classification of air conditioning systems-At itioning system components. erties of air: Applied psychrometry - Psychrometric chart mal comfort, effective temperature, comfort chart – Insid n condition, ventilation standards nation of Air Conditioning Loads: Summer and Winter onditioning load-load classification- heating and cooling gain/loss through glass, heat gain/loss through structures	r 3 	S Exam Marks (%) 15
I	cond cond Prop Thern desig Estin air cu heat intern	Content conditioning: Introduction-physiological basis for a itioning-classification of air conditioning systems-A itioning system components. erties of air: Applied psychrometry - Psychrometric chart mal comfort, effective temperature, comfort chart – Insid n condition, ventilation standards nation of Air Conditioning Loads: Summer and Winter onditioning load-load classification- heating and cooling gain/loss through glass, heat gain/loss through structures nal load, ventilation load, and infiltration load.	r 3 5 r 5 5, 8	 Exam Marks (%) 15 15
I	cond cond Prop Therr desig Estin air co heat interr Sum coil s	Content conditioning: Introduction-physiological basis for a itioning-classification of air conditioning systems-As- itioning system components. erties of air: Applied psychrometry - Psychrometric chart mal comfort, effective temperature, comfort chart – Insid n condition, ventilation standards nation of Air Conditioning Loads: Summer and Winter onditioning load-load classification- heating and cooling gain/loss through glass, heat gain/loss through structures hal load, ventilation load, and infiltration load. First Internal Examination mer Air Conditioning Processes: Room sensible factor- sensible factor-ADP-Summer Air Conditioning process. fer Air Conditioning Processes.	r 3 - 5 r 5 ;; 8	 Exam Marks (%) 15 15
I II III	cond cond Prop Thern desig Estim air co heat intern Sum coil s Wint	Content conditioning: Introduction-physiological basis for a itioning-classification of air conditioning systems-A itioning system components. erties of air: Applied psychrometry - Psychrometric chart mal comfort, effective temperature, comfort chart – Insid n condition, ventilation standards nation of Air Conditioning Loads: Summer and Winter onditioning load-load classification- heating and cooling gain/loss through glass, heat gain/loss through structures hal load, ventilation load, and infiltration load. First Internal Examination mer Air Conditioning Processes: Room sensible factor ensible factor-ADP-Summer Air Conditioning process. ter Air Conditioning Processes. Second Internal Examination	r 3 5 r 5 ³ , 8 8 7 8 8	 Exam Marks (%) 15 15
I II III	cond cond Prop Thern desig Estim air cu heat intern Sum coil s Wint Air equip	Content conditioning: Introduction-physiological basis for a itioning-classification of air conditioning systems-As- itioning system components. erties of air: Applied psychrometry - Psychrometric chart mal comfort, effective temperature, comfort chart – Insid n condition, ventilation standards nation of Air Conditioning Loads: Summer and Winter onditioning load-load classification- heating and cooling gain/loss through glass, heat gain/loss through structures hal load, ventilation load, and infiltration load. First Internal Examination mer Air Conditioning Processes: Room sensible factor- sensible factor-ADP-Summer Air Conditioning process. fer Air Conditioning Processes.	r 3 5 r 5 ³ , 8 8 7 8 8	 Exam Marks (%) 15 15

Thermal Engineering – Mechanical Engineering Stream

	Air Handling Equipments: Fans – types, performance, and selection; air conditioning apparatus, cooling dehumidifying, humidifying heating and cleaning equipments.	4	
VI	Air Conditioning Systems: DX system, all water system, all air system, air water system, central and unitary systems, fan coil system; automatic controls of air conditioning systems, thermostats, dampers, and damper motors; automatic valves piping design- water piping, refrigerant piping, steam piping.	5	20
	Cluster Level End Semester Examination		

Course	e No.	Course Name	L-T-P: Credits	Year of Introduction				
10ME	6319	SOLAR THERMAL ENGINEERING	3-0-0: 3	2015				
	Course Prerequisites Basic knowledge of solar energy, thermal engineering at UG/PG Level.							
Course C The co	Objectiv ourse is		the con-	cept of solar				
		n and its energy, solar radiation and its measurement, coll thermal energy storage, passive solar house, energy storage						
	idents ar	nes e expected to apply the general principles of solar therma messing devices and make professionals in power and ener	•					
 J A Di A B M S P Su Tiwari Duffie 	th and J ffie and feinel and khatme: , G.N. an and Bac	F Kreider: Principles of Solar thermal Engg. W A Beckman: Solar Engineering of Thermal processes d F P Meinel: Applied Solar Engineering Solar Energy nd SayestaSuneja., Solar Thermal engineering Systems, Nar kuran, Solar Thermal Engineering. lar Engineering	osa Publi	shing House.				
Module		Content	Hours	Semester Exam Marks (%)				
Ι	radiatic	nd it's Energy: Solar spectrum, solar constant & sola ons, Sun earth angles, solar hourly radiations-Radiations on ntal and inclined surfaces.,		15				

П	Solar radiation - solar radiation data, solar radiation geometry, empirical equations for predicting solar radiation, solar radiation on tilted surfaces, Measurement of Solar Radiation: Pyrheliometer, Pyranometer, Sunshine- Recorder.	8	15
	First Internal Examination		
ш	Collection of Solar Energy : Flat plate collectors, classification, construction, heat transfer coefficients, optimisation of heat losses - Analysis of flat plate collectors, testing of collectors	6	15
IV	Solar Air Heater : Description & classification, conventional air heater, air heater above the collector surface air heaters with flow on both sides of absorbers to pan air heater, air heater with finned absorbers, porous absorber	6	15
	Second Internal Examination		
V	Thermal energy storage- sensible heat storage, latent heat storage, thermochemical storage. Solar Water heater: Collection cum storage water heater, Natural circulation & forced circulation water heater, shallow solar ponds. Solar Concentrators: Classification, characteristic parameters, types of concentrators materials in concentrators.	6	20
VI	Passive Solar House: Thermal gain, Thermal cooling, Ventilation. Energy Storage: Sensible heat storage, Liquid, Solid, packed bed, Latent heat storage. Solar Distillation, Solar Cookers, Solar Refrigeration	10	20
	Cluster Level End Semester Examination		

Course No.	Course Name	L-T-P: Credits	Year of Introduction		
10ME6321	BOUNDARY LAYER THEORY AND TURBULENCE	3-0-0: 3	2015		
Course Prerequi	sites				
Basic knowledg	ge of fluid mechanics, boundary layer at UG/PG Level.				
Course Objectiv	es				
To impart	knowledge on the governing equations of boundary layer	flow.			
To impart	knowledge on the Laminar and turbulence flow Boundar	y Layer Eq	uations		
To unders	stand the theory of turbulent flow and its modeling, struc	ture types a	and a detailed		
insight		21			
about turb	about turbulence				
Syllabus					
	Boundary layer theory, Laminar and turbulent boundar ulence and turbulence models, Statistical Theory of Turbu				

Expected Outcomes

On successful completion of this course the student will be able to apply the fundamental concepts related to viscous flows in general, and to boundary layer flows ,apply the concepts of boundarylayer theory and turbulence.

References

1. G. Biswas and E. Eswaran, Turbulent Flows, Fundamentals, Experiments and Modelling, Narosa Publishing House, 2002.

Course Plan

- 2. H. Schlichting and Klaus Gersten, Boundary Layer Theory, Springer 2000.
- 3. R.J. Garde, Turbulent Flow, New Age International (p) Limited, Publishers, 2000.

Course Plan					
Module	Content	Hours	Semester Exam Marks (%)		
I	Fundamentals Boundary layer theory -Boundary Layer Concept, Laminar Boundary Layer on a Flat Plate at zero incidences, Turbulent Boundary Layer on a Flat plate at zero incidence,Fully Developed Turbulent Flow in a pipe, Boundary Layer on an airfoil,	10	15		
Π	Boundary Layer separation.	6	15		
	First Internal Examination				
III	Turbulent Boundary layers Internal Flows – Couette flow – Two-Layer Structure of the velocity Field – Universal Law of the wall – Friction law – Fully developed Internal flows – Chennel Flow, Couettee – Poiseuille flows, Pipe Flow	8	15		
IV	Turbulence and Turbulence Models: Nature of turbulence – Averaging Procedures – Characteristics of Turbulent Flows – Types of Turbulent Flows – Scales of Turbulence, Prandtl's Mixing length, Two-Equation Models, Low – Reynolds – Number Models, Large – Eddy Simulation.	8	15		
	Second Internal Examination				
V	Statistical Theory of Turbulence : Ensemble Average – Isotropic Turbulence and Homogeneous Turbulence – Kinematics of Isotropic Turbulence – Taylor's Hypothesis – Dynamics of Isotropic Turbulence – Grid Turbulence and decay – Turbulence in Stirred Tanks.	8	20		
VI	Turbulent flows Wall Turbulent shear flows – Structure of wall flow – Turbulence characteristics of Boundary layer – Free Turbulence shear flows – Jets and wakes – Plane and axi - symmetric flows.	8	20		
	Cluster Level End Semester Examination	•			

Course N	No.	Cour	se Name		L-T-P: Credits	Year of Introduction	
10GN60	01	RESEARCH N	IETHODOLOGY		0-2-0: 2	2015	
Course Prerequisites Basic skill of analyzing data earned through the project work at UG level; Basic knowledge in technical writing and communication skills earned through seminar at UG level. 							
(2) To d As a tu involven The facu	nderstand the evelop skills atorial type ment from the	course, this cour	onal communication a se is expected to b cted which encourag	e more l	learner cent	ric and active	
Syllabus	, of recent	mathadalagu ra	earch process - scien	tifia math	oda racara	h problem and	
source - writing - writing- research and intel modeling validity - Expected The stuc (1) Be n (2) Anal	problem solv reporting at format of rep paper writing lectual prope - graphs - reliability – Outcomes lents are expen- notivated for yze and evalue	ving approaches - nd presentation - orting, oral presen - publications and erty rights. Resear heuristic optimiz scaling - sample d ected to : research through the ate research work	ulation of research t experimental research interpretation and re- itation - seminars and ethics - consideration ch methods – model ation - simulation n esign - data collection the attainment of a per s and to formulate a r al communication, ter	ch - ex p eport writ d conferent ns in public ling and nodeling n methods	bost facto re ting - princi nces, Resear lishing, citati simulation - - measurer and data and of research m roblem to pu	search. Thesis iples of thesis ch proposals - ion, plagiarism mathematical nent design – alysis.	
(3) Deve papers.	elop skills rel	ated to professiona	a communication, te	chnical re	port writing	and publishing	
Pu 2. R. 3. K. <i>Ma</i> 4. De Pu 5. J.V 6. Sc	R Kothari, <i>R</i> blishers Panneerselva N. Krishnas ethodology, <i>In</i> epak Chawla blishing Hou V. Bames, <i>Sta</i> hank Fr., <i>The</i>	m, Research Meth swamy, Appalyer ntegration of Prince a, and MeenaSon se. atistical Analysis for ories of Engineeria	ogy : Methods & odology, Prentice Ha Sivakumar, and M. iples, Pearson Educat dhi, Research Metho r Engineers and Scien g Experiments, Tata , Formulation of Hyp	ill of India Mathiraja tion. <i>odology –</i> <i>ntists</i> , Mc McGraw	n, New Delhi an, <i>Manager</i> <i>Concepts &</i> Graw Hill, N Hill Publica	, 2012. <i>ment Research</i> & <i>Cases,</i> Vikas Jew York. tion.	
8. Do 9. Ra	ouglas C Mon	tgomery, Design a	nd analysis of experi lology : A step by	ments, W	iley Internat	tional	

- 10. Donald Cooper, Business Research Methods, Tata McGraw Hill, New Delhi.
- 11. Leedy P D, *Practical Research : Planning and Design,* 4th Edition, N W MacMillan Publishing Co
- 12. Day R A, How to Write and Publish a Scientific Paper, Cambridge University Press, 1989
- 13. Coley S M and Scheinberg C A, Proposal Writing, 1990, Newbury Sage Publications.
- 14. Sople, *Managing Intellectual Property: The Strategic Imperative*, Prentice Hall of India, New Delhi, 2012
- 15. Manna, Chakraborti, *Values and Ethics in Business Profession*, Prentice Hall of India, New Delhi, 2012.
- 16. Vesilind, Engineering, Ethics and the Environment, Cambridge University Press.
- 17. Wadehra, B.L. Law relating to patents, trademarks, copyright designs and geographical indications, Universal Law Publishing

	Course plan				
Module	Content	Hours	Semester Exam Marks (%)		
Ι	Overview of Research Methodology : Research concepts, meaning, objectives, motivation, types of research, research process, criteria for good research, problems encountered by Indian researchers, scientific method, research design process.	5	15		
П	Research Problem and Design : Formulation of research task, literature review, methods, primary and secondary sources, web as a source, browsing tools, formulation of research problems, exploration, hypothesis generation, problem solving approaches, introduction to TRIZ (TIPS), experimental research, principles, laboratory experiment, experimental designs, ex post facto research, qualitative research.	5	15		
	First Internal Examination				
ш	Thesis Writing, Reporting and Presentation : Interpretation and report writing, techniques of interpretation, precautions in interpretation, significance of report writing, principles of thesis writing, format of reporting, different steps in report writing, layout and mechanics of research report, references, tables, figures, conclusions, oral presentation, preparation, making presentation, use of visual aids, effective communication, preparation for presentation in seminars and conferences.	4	15		
IV	Research proposals, Publications, Ethics and IPR : Research proposals, development and evaluation, research paper writing, layout of a research paper, journals in engineering, considerations in publishing, scientometry, impact factor, other indexing like h-index, citations, open access publication, ethical issues, plagiarism, software for plagiarism checking, intellectual property right (IPR), patenting case studies.	5	15		
	Second Internal Examination Research Methods - Modeling and Simulation: Modeling and				
V	simulation, concepts of modeling, mathematical modeling,	5	20		

	composite modeling, modeling with ordinary differential equations, partial differential equations (PDE), graphs, heuristics and heuristic optimization, simulation modeling.		
VI	Research Methods - Measurement, Sampling and Data Acquisition : Measurement design, errors, validity and reliability in measurement, scaling and scale construction, sample design, sample size determination, sampling errors, data collection procedures, sources of data, data collection methods, data preparation and data analysis.	4	20

Course No.	Course Name	L-T-P: Credits	Year of Introduction			
10ME6409	SEMINAR-I	0-0-2:2	2015			
Course Prerequi						
Course Objective	S					
 Increasing the breadth of knowledge Enhancing the ability of self-study Improving presentation and communication skills 						
Improving presentation and communication skills						
Augmenting the skill of Technical Report Writing						
Syllabus						
	nd related areas. Students have to register for the seminary					
to prepare a ser be of 30minute	th any faculty member offering courses for the programm ninar report in the prescribed format given by the Depar s duration and give presentation to the Seminar Assessm their classmates. It is mandatory for all the students to at s.	tment. The ent Comm	seminar shall ittee (SAC) in			
to prepare a ser be of 30minute the presence of their classmates	ninar report in the prescribed format given by the Depar s duration and give presentation to the Seminar Assessm their classmates. It is mandatory for all the students to at	tment. The ent Comm	seminar shall ittee (SAC) in			
to prepare a set be of 30minute the presence of their classmates Expected Outco	ninar report in the prescribed format given by the Depar s duration and give presentation to the Seminar Assessm their classmates. It is mandatory for all the students to at s.	tment. The ent Comm	seminar shall ittee (SAC) in			
to prepare a set be of 30minute the presence of their classmates Expected Outco • Identify a	ninar report in the prescribed format given by the Depar s duration and give presentation to the Seminar Assessm their classmates. It is mandatory for all the students to at s. mes :At the end of the course, the student will be able to	tment. The ent Comm ttend the pr	seminar shall ittee (SAC) in resentations of			
to prepare a set be of 30minute the presence of their classmates Expected Outcom Identify a • Assimilat	minar report in the prescribed format given by the Depar s duration and give presentation to the Seminar Assessm their classmates. It is mandatory for all the students to at a. mes :At the end of the course, the student will be able to nd choose appropriate topic of relevance.	tment. The ent Comm ttend the pr	seminar shall ittee (SAC) in resentations of			
to prepare a ser be of 30minute the presence of their classmates Expected Outcom Identify a Assimilate Prepare te Design, de	ninar report in the prescribed format given by the Depar s duration and give presentation to the Seminar Assessm their classmates. It is mandatory for all the students to at s. mes :At the end of the course, the student will be able to nd choose appropriate topic of relevance. e literature on technical articles of specified topic and deve	tment. The ent Comm ttend the pr elop compr	seminar shall ittee (SAC) in resentations of			
to prepare a ser be of 30minute the presence of their classmates Expected Outco Identify a Assimilate Prepare te Design, de Evaluation	minar report in the prescribed format given by the Depar s duration and give presentation to the Seminar Assessm their classmates. It is mandatory for all the students to at a. mes :At the end of the course, the student will be able to nd choose appropriate topic of relevance. e literature on technical articles of specified topic and devi- chnical report.	tment. The ent Comm ttend the pr elop compr ic.	seminar shall ittee (SAC) in resentations of			
to prepare a ser be of 30minute the presence of their classmates Expected Outcom Identify a Assimilate Prepare te Design, de	minar report in the prescribed format given by the Depar s duration and give presentation to the Seminar Assessm their classmates. It is mandatory for all the students to at a. mes :At the end of the course, the student will be able to nd choose appropriate topic of relevance. e literature on technical articles of specified topic and devi- chnical report.	tment. The ent Comm ttend the pr elop compr	seminar s ittee (SAC resentation			

- Evaluation of the Report: 20% Regular Attendance : 10 % 3.
- 4.

Course No.	Course Name	L-T-P: Credits	Year of Introduction			
10ME6411	ENGINEERING SOFTWARE LAB	0-0-2:1	2015			
Course Prerequisites: None						
Course Objective	S					
	art fundamental knowledge on using various analytical too ring simulations	ols like flue	nt for			
	w various fields of engineeringwhere these tools can be ef out of a product	fectively us	ed to improve			
To impa	art knowledge on how these tools are used in industries this using these tools	y solving s	ome real time			
 integrat C/C++// Modelin as FLUEN Solving 	ents basic mathematical problems such as curve fitting, nume ion and numerical solution of differential equation using FORTRAN/JAVA/MATLAB ng and analysis of Fluid dynamics and Heat transfer probl T / CFX / PHOENIX / ANSYS governing equation of fluid flow and heat transfer using /C++/FORTRAN/JAVA/MATLAB.	ems using s	oftware such			
Expected Outco						
After completion						
	• Student will be able to appreciate the utility of tools like fluent in solving real time problems and day to day problems					
• Students v applicatio	will become versatile in using these tools for any engineer ns	ring and rea	l time			
• Students v curriculur	will also acquire knowledge on utilizing these tools for a l	better projec	et un their			

SEMESTER 11

Course	e No.	('ourse Name	L-T-P- Credits	Year of Introduction		
10ME6	5402	INTERNAL COMBUSTION ENGINE	8-0-0- 3	2015		
Course P Basic k			n at UG/P	'G Level		
Course C The course and their engine. A emission Syllabus Thermo Combus Relation Control Expected	Basic knowledge of thermodynamics, thermochemistry, processes, pollution at UG/PG Level. Course Objectives The course helps the students to impart an awareness regarding the chemistry of fuel air mixtures and their combustion, how the combustion mechanism takes place in the engine cylinder of an IC engine. Also to convey information regarding various alternate fuels, their performances and engine emission and their control					
Referenc 1. Heywo 2. Ferguso 3. Taylor Cambridg 4. Obert H	es od J.B. , on C.R. a C.F., Tl ge, 1985 E.F., Inte pell A.S.	Internal Combustion Engine Fundamentals, McGraw Hill I and Kirkpatrick A.T., Internal Combustion Engines, John W he Internal Combustion Engine Theory & Practice, Vol I rnal Combustion Engines & Air Pollution, Harper & Row I , Thermodynamic Analysis of Combustion Engines, Joh	Book Co., /iley & So & II, Th Publicatio	ons Inc, 2001 e MIT Press, n Inc., 1973		
Module		Content	Hours	Semester Exam Marks (%)		
I	Thermochemistry of Fuel, Air Mixtures – Characterization of flames, Ideal Gas Model, Composition of Air & Fuels					
П	Burned Unburn	ties of working fluids – Unburned Mixture Composition and Unburned Mixture Charts, Relation betweer ed & Burned Mixture Charts, Transport Properties t Gas Composition	1 8	15		
		First Internal Examination				

ш	Thermodynamic Relations for Engine Processes - Cycle Analysis with Ideal Gas Working Fluid, Fuel – Air Cycle Analysis, Over Expanded Engine Cycles, Availability Analysis of Engine Processes, Comparison with Real Engine Cycles.	8	15
IV	Combustion in IC Engines Combustion in S.I.Engines – Essential Features, Thermodynamic Analysis, Flame Structure & Speed, Cyclic Variations in Combustion, Partial Burning & Misfire, Spark Ignition, Abnormal Combustion – Knock & Surface Ignition, S.I. Engine Combustion Chamber Design. Combustion in C.I. Engines – Essential Features, Types of Diesel Combustion Systems	10	15
	Second Internal Examination		
V	Phenomenological Model, Analysis of Cylinder Pressure Data, Fuel Spray Behaviour, Ignition delay, Mixing Controlled Combustion, Variables that affect C.I. Engine Performance. I.C.Engine Fuels –conventional and alternative fuels, characteristics, fuel rating. Supercharging & Turbocharging – Performance of 2 stroke & 4 stroke S.I. & C.I. Engines	8	20
VI	Pollutant formation in S.I. and C.I. Engines and its Control – Pollutants – NOx, CO, Unburned HC, Particulate Emissions, Exhaust Gas Treatment – Thermal & catalytic Converters, Particulate Traps, Emission Standards & Instrumentation to measure Pollution	8	20
	Cluster Level End Semester Examination		

Course No.	Course Name	L-T-P- Credits	Year of Introduction	
10ME6404	ADVANCED POWERPLANT ENGINEERING	3-0-0-3	2015	
Course Prerequi	isites			
Fundamentals of	of thermodynamics, knowledge of thermodynamic cycles,	Heat excha	ingers and gas	
turbine UG Lev	rel.			
Course Objectiv	es			
• To make the students to understand the energy scenario and the environmental issues related to the power plants				
• Creating awareness to the students on the various utilities in the power plants and the avenues for optimizing them.				
Syllabus				
Introduction to engineering seismology, General Principles of seismic design, Static and Dynamic				
analysis, Desig	n spectrums, Building Configurations, Reduction of Earth	quake effect	cts, Behaivour	

of Masonry Buildings and RC buildings to earthquake, Ductile detailing for seismic design, Irregularities in buildings, Base Isolation technique, Seismic dampers.

Expected Outcomes

On successful completion this course a student gets a sound knowledge in

- Indian Power sector
- Different types of power plant
- Environmental Impact of power plants

References

- 1. M.M.EI Wakil : Power Plant Technology, Tata McGraw-Hill
- 2. Nag: Power Plant Engineering, Tata McGraw-Hill
- 3. Vapat&Scrotski : Power station Engineering and Economy, Tata McGraw-Hill
- 4. Nagpal : Power Plant Engineering, Khanna Publications
- 5. R K Rajput : Power Plant Engineering, Laxmi Publications

	Course Plan		
Module	Content	Hours	Semester Exam Marks (%)
I	Introduction to power plants , Overview of the Indian power sector – load curves for various applications – types of power plants – merits and demerits – criteria for comparison and selection	6	10
II	Steam Power plants , Rankine Cycle – Performance – thermodynamic analysis of cycles. Cycle improvements. Superheaters, reheaters – condenser and feed water heaters – operation and performance – layouts	10	20
	First Internal Examination		
III	Gas turbines – optimization – thermodynamic analysis of cycles – cycle improvements – multi spool arrangement. Intercoolers, reheaters, regenerators – operation and performance – layouts	8	20
IV	Binary and combined cycle – coupled cycles – comparative analysis of combined heat and power cycles – IGCC – AFBC/PFBC cycles – Thermionic steam power plant.	8	15
	Second Internal Examination		
V	Overview of Nuclear power plants – radioactivity – fission process – reaction rates – diffusion theory, elastic scattering and slowing down – criticality calculations – critical heat flux – power reactors – nuclear safety. MHD and MHD – steam power plants.	8	20
VI	Environmental impacts and its control -Air and water pollution – acid rains – thermal pollution – radioactive pollution – standardization – methods of control. Environmental legislations / Government policies. Economics of power plants.	8	15
	Cluster Level End Semester Examination		

Course	No.	Course Name		-T-P: redits	Year of Introduction
10ME(306	MEASUREMENTS IN THERMAL ENGINEERING		0-0:3	2015
	rerequisites	echanical measurements at UG Level.			
Course C To enha	bjectives nce the knowl	edge of the students about various measuring in d uncertainty analysis.	istrun	nents, te	chniques and
performan Uncertain measuren	cecharacteristi ty analysis, p ent,Thermal A	on and functional description of measuring cs of instruments - static characteristics, pressuremeasurement, flow measurement, ter nalysis Techniques, Data Acquisition and Proces	dyna npera	amic c	haracteristics,
After the principles backgrout measuren	related to meand for optical end	the course, one should be able to understand the suring systems, measurement uncertainty, signal xperimentation, fluid mechanical apparatus, mea ate, flow visualization techniques, measurement ture.	cond suren	itioning nent of f	and analysis, low pressure,
2. Err 3. Do 4. Wi 5. D. 6. Bec 7. Nal 8. Phy	Holman : Exper est O Doeblin : I hald P Eckman : lard, Mertt, Dea Patranabis : Prin- kwith & Buck : tra&Chaudary :	imental methods for Engineers Measurement Systems - Application & Design Industrial Instrumentation n,Settle : Instrumental Methods of analysis ciples of Industrial Instrumentation Mechanical Measurements Industrial Instrumentation ents in Gas Dynamics and Combustion : High Speed	Aerod	lynamics	and
		Course Plan			
Module		Content		Hours	Semester Exam Marks (%)
Ι	Measuring In dynamic chara		and	6	15
	errors - Erro methods -prob	Aperimental data - Causes and types of experime r & uncertainty analysis- statistical & graph bability distributions.	nical	6	15
Π	methods, T Junction ser measuring pr	measurements -Theory, Thermal expan hermoelectric sensors, Resistancethermomeniconductor sensors, Pyrometry, Tempera oblems in flowingfluids, Dynamic Response mpensation of Temperature sensors.Heat	etry, ture & &	8	15

	First Internal Examination		
ш	Fluid pressure measurement - Mechanical & Electrical types, High pressure & Low pressure measurements, Differential Pressure Transmitters.	6	15
IV	Laminar & Turbulent flow measurements - Determination of Reynolds stresses – Flow visualization techniques - Gross Volume flow measurements - Measurement of Liquid level, Density, Viscosity, Humidity & Moisture, Compressible flow measurements.	6	15
	Second Internal Examination		
V	Thermal Analysis Techniques - Measurements in combustion: Species concentration, Reaction rates, Flame visualization, charged species diagnostics, Particulate size measurements.	6	20
VI	Data Acquisition and Processing - General Data Acquisition system - Signal conditioning - Data transmission - A/D & D/A conversion - Data storage and Display - Computer aided experimentation.	6	20
	Cluster Level End Semester Examination		

Course No.	Course Name	L-T-P: Credits	Year of Introduction		
10ME6114	SOFT COMPUTING TECHNIQUES	3-0-0:3	2015		
Course Prerequi					
	of operations research and computer programming.				
Course Objectiv					
	d appreciate the application of various soft computing	ng techniques	in engineering		
systems.					
Syllabus					
1	timization - Evolutionary methods - Genetic algorith	0			
V - II	ions -Simulated annealing-Fuzzy logic - Artificial ne	ural networks.			
Expected Outco					
	npletion of the course, the students are expected to so	lve combinato	orial		
	lems using the following tools-				
Genetic A	lgorithm for single objective and multiobjective optim	nisation			
Simulated	Annealing				
Fuzzy Log	gic				
Artificial	Artificial Neural Network				
References	References				
1. Deb, Kal	yanmoy, Optimization for engineering design: Alg	orithms and o	examples. PHI		
Learning	Learning Pvt. Ltd., 2012.				
2. Deb, Kaly	anmoy, Multi-objective optimization using evolution	nary algorithn	ns. John Wiley		

& Sons, 2001.

- 3. Goldberg, D.E., *Genetic Algorithms in Search, Optimization, and Machine Learning*, Addison-Wesley, 1989.
- 4. Schalkoff, R.J., Artificial Neural Networks, McGraw-Hill Companies Inc., 1997.
- 5. Sundareswaran, K., A Learner's Guide to Fuzzy Logic Systems, Jaico Publishing House, 2005.
- 6. Yegnanarayanan, B., Artificial Neural Networks, Prentice Hall of India, 1999

Course plan				
Module	Content	Hours	Semester Exam Marks (%)	
Ι	Introduction to combinatorial optimization – Meta heuristics- Genetic algorithm -Terminology of GA – Strings - Coding - Fitness function - GA operators - Algorithm	8	15	
II	Multi-objective genetic algorithm – Weighted sum approach – Algorithm for non-dominated solutions – Diversity preserving mechanism	8	15	
	First Internal Examination			
III	Simulated Annealing: Introduction - Algorithm - Applications	6	15	
IV	Fuzzy Logic: The concept of uncertainty and associated solutions - Fuzzy sets - Basic properties and characteristics of fuzzy sets - Fuzzy set operations - Fuzzy reasoning - Major components of a fuzzy logic system - Design aspects of fuzzy systems - Applications of fuzzy logic	10	15	
	Second Internal Examination			
V	Artificial Neural Networks (ANN): Characteristics of ANN - Terminology -Models of neuron – Topology - Basic learning laws - Overview of neural computing - Neural approaches to computing - Engineering approaches to computing	8	20	
VI	ANN's learning approches - Training set and test set - Generalization - Learning curves - Applications of ANN in optimization - Simple examples	8	20	
	Cluster Level End Semester Examination			

Course Name	L-T-P: Credits	Year of Introduction			
DESIGN OF EXPERIMENTS	3-0-0:3	2015			
Prerequisites					
statistics at the UG level					
Objectives					
This course exposes the students to the basic statistical concepts, sampling techniques, principles					
and applications of Design of Experiments.					
	DESIGN OF EXPERIMENTS statistics at the UG level ses the students to the basic statistical concepts, sa	Course Name Credits DESIGN OF EXPERIMENTS 3-0-0:3 statistics at the UG level ses the students to the basic statistical concepts, sampling technic			

randomiz experime application Expected On compl • Co • Go • te • Go • In Reference 1. Lawson Thomson	on, J. & Erjavec, J., "Modern Statistics for Engineering and Qu on Duxbury, Indian EPZ edition	ts in a factorial ing and c ality Imp	2 ^k factorial design and onfounding
3. Box, G & Sons	hertm Diygkas C, "Design and Analysis of Experiments". Fifth ed, Jo Beorge E P, Hunter William G, Hunter Sturat J : "Statistics for Experi- as C. Montgomery, "Design and Analysis of Experiments", 8th Edition	rimenters	" John Wiley
	Course Plan		
Module	Content	Hours	Semester Exam Marks (%)
Ι	History of design of experiment; strategy, principle and application of DOE; basic statistical concepts, sampling techniques and distributions; inferences about means and standard deviations and considerations of different hypothesis; Experiments with single factorial design and application of ANOVA; randomized blocking and Latin squares.	6	15
П	An Introduction to Design of Experiments; The problem of <u>interpreting</u> experimental results; The purpose of randomization; A rationale for <u>randomization</u> , <u>Restricted</u> randomization.	6	15
	First Internal Examination		
ш	Hypothesis Testing rationale; Comparing two methods experimentally; Introduction to Factorial Experiments and DOE Terminology; Yate's <u>algorithm</u> for calculation of effects in a 2^k design; <u>Testing significance</u> of effects in a 2^k factorial experiment; <u>Normal Probability Plot</u> on ordinary graph paper.	8	15
IV	Developing a <u>mathematical model</u> ; <u>Residual Analysis</u> , testing for model adequacy; Finding the <u>Alias Structure</u> of a Fractional Factorial; strategy, principle and application of DOE; basic statistical concepts, sampling techniques and distributions	8	15
	Second Internal Examination		
V	Inferences about means and standard deviations and considerations of different hypothesis; Factorial design, 2k and 3k factorial	8	20

	design; blocking and confounding techniques in 2k factorial design;		
VI	Concept of fractioning of factorial design; Response surface method; Introduction to robust design, robust parameter design for single response system; Experiments with non-normal data.	8	20
	Cluster Level End Semester Examination		

Course No.	Course Name	L-T-P: Credits	Year of Introduction		
10ME6118	MANAGEMENT INFORMATION SYSTEM	3-0-0:3	2015		
Course Prerequ Basic knowledge	isite: on computer programming and management at UG	level			
Course Objecti					
Management Inf	mprises an introduction to the foundations, tech formation Systems (MIS). It is intended to provide a hich IS professionals perform specific technical task	critical under			
Cycle – System and Models - In Techniques - In software organiz and solution pro warehousing	Management Information Systems – Information Requirements Specification documents – Data Flow troduction to data structures and relational database troduction to Capability Maturity Model(CMM) a ations – Software Testing – Software Reliability - S cedures - Multimedia technology, Distributed data m	Diagrams – – Modern So und Quality M ystem implem	Decision Tools oftware Design Management in nentation issues		
Expected Outco					
-	f the course, the students are expected to have the ab	•			
	nd the basic components of a management information	on systems			
	nd document the system requirements				
-	nd develop an Information System				
· · ·	element and maintain a management information syst	em			
 Reference Books: Burch and Gruditski, Information Systems-Theory and Practice, Fifth edition, John Wiley & Sons, New York, 1989. Hawryszkiewycz, I.T., Introduction to Systems Analysis and Design, Prentice Hall of India, 1989. 					
3. Ian Somme	erville, Software Engineering, 6^{th} . Edition, Pearson E	ducation Asia	, 2001.		
McGraw H	ry C., Analysis, Design, and Implementation of Info ill, New York, 1992. A., Management Information Systems, 4/e, Tata McC	-			

	Course Plan			
Module	Contents	Contract hours	Semester Exam marks %	
Ι	Management Information Systems- Building blocks in information systems-input, output, model, technology, database, and control blocks, System view of business and information system design forces, Information systems development life cycle, Information systems for strategic planning	8	15	
II	System Investigation and requirements engineering, System requirements specification documents, Feasibility studies, System analysis and general system design, Charting tools in data base design, Data flow diagrams and E-R diagrams, Decision tools and models, Prototyping, Detailed system design, Form design, Code design, Database normalisation, Introduction to data structures and relational database.	8	15	
	First Internal Examination			
III	Modern software design techniques, Verification and validation methods, Performance of software systems, Software metric and models, Software standards, Introduction to Capability Maturity Model(CMM) and Quality Management in software organizations.	10	15	
IV	Software testing, Review, walkthrough and inspection, Testing approaches, Software reliability, Errors, faults, repair and availability, Reliability and maintenance.	6	15	
	Second Internal Examination			
V	System implementation issues and solution procedures, training and post implementation audit, System fine-tuning, Monitoring and updating.	8	20	
VI	Multimedia technology, Distributed data management, Data mining and warehousing, Security features in global information systems.	8	20	
	Cluster Level End Semester Examination			

Course Name	L-T-P: Credits	Year of Introduction			
QUALITY AND RELIABILITY ENGINEERING	3-0-0:3	2015			
Course Prerequisites					
Fundamental knowledge in probability theory and statistics is desirable.					
Course Objectives					
	QUALITY AND RELIABILITY ENGINEERING sites wledge in probability theory and statistics is desirable	Course NameCreditsQUALITY AND RELIABILITY ENGINEERING3-0-0:3sites wledge in probability theory and statistics is desirable.			

	in depth the quality and reliability aspects with emphasis on an in	ndustrial	organizational		
environm Syllabus	ent.				
v	al Quality Control-Total Quality management-QMS-ISO9000) standa	rds- Taguchi		
	Six sigma concepts- Design of experiments- Reliability- Total Pr	oductive	Maintenance-		
	y management.				
-	I Outcomes npleting the course, the students will be able to				
	lentify and describe various areas in the quality control and reliability	v engine	ering fields.		
	lan and design a quality control program in an industry/organization		8		
	stimate the reliability of complex engineering systems				
	ain good understanding of the principles of total productive mainter	nance			
Reference					
	ale H; Besterfield, Total quality Mangement, Pearson Education Inc aplen, Practical Approach to Quality Control, Random House				
	Connor, Practical Reliability Engineering, John Wiley and Sons				
4. R	yan, Statistical Methods for Quality Improvement, John Wiley and				
	oss, Taguchi Techniques for Quality Engineering, McGraw Hill Pul		1.0		
	ouglas C. Montgomery. Design and Analysis of Experiments, John alaguruswami E., Reliability Engineering, Tata Mc Graw Hill Publ				
7. D	Course plan	isning Co	J. I VI LIU		
			Semester		
Module	Content	Hour	Exam		
		S	Marks (%)		
	Basic concepts and definition, Traditional Quality Control, Total				
Ι	Quality management, Deming's principles, Customer focus, Employee involvement, Continuous process improvement,	8	15		
	PDCA cycle				
	Seven step process, Kaizen, Quality measurements, Quality				
Π	costs, QFD, QMS-ISO9000 standards-requirements and	8	15		
	documentation, Taguchi methods, quality loss function, Parameter design and Tolerance design concepts		-		
First Internal Examination					
	Six sigma concepts -define and measure phase, flow charting,				
III	basic tools, probability and hazard plotting, Six sigma	8	15		
	measurements, basic control charts and process performance				
	matrices, Measurement systems analysis. Design of experiments-basics, single factor, two factor				
TX 7	experiments. ANOVA, Taguchi approach to design of	0	1.5		
IV	experiments, orthogonal arrays, Signal to noise ratio, RSM-	8	15		
concepts and methods.					
	Second Internal Examination				
v		8	20		

VI	Total Productive Maintenance, maintainability and Availability Concepts, Reliability management.	8	20		
	Cluster Level End Semester Examination				

Course	No.	Course Name	L-T-P: Credits	Year of Introduction		
10ME6	5124	PROJECT ENGINEERING AND MANAGEMENT 3	-0-0:3	2015		
	Course Prerequisites Basic knowledge of Industrial Engineering or Management at the UG Level					
This cour of the pro organizin	ject manage	project management in theory and practice and the er. The course offers a practical approach to manag and controlling the efforts of the project.				
Estimatio	n - Project	Management - Project Management Concepts and T Planning and Scheduling- Resource Constraine ol - Management of Special Projects.				
 Expected Outcomes On completion of the course, the students are expected to have A thorough understanding of the principles of project management; The ability to lead a project team; The ability to accomplish projects on schedule without cost and time overruns; The knowledge on the procedure for implementing big and special projects. Reference Books Shtub, Bard and Globerson Project Management: Processes, Methodologies, and Economics, 2/E, Prentice Hall Inc, 2005. Lock, Project Management Handbook, Gover Publishing Ltd, 1981. Cleland and King, Project Management Handbook 2nd Edition, Wiley, 1988. Wiest and Levy, A Management Guide to PERT/CPM Prentice Hall of India New Delhi. Horald Kerzner, Project Management: A Systemic Approach to Planning, Scheduling and Controlling, CBS Publishers, 2002. S. Choudhury, Project Scheduling and Monitoring in Practice, South Asian Publishers, Delhi, 1983. 						
Course Plan						
Module		Content	Contra hours			
Ι	Definition	n to Project management, Characteristics of projects and objectives of Project Management, Stages o anagement, Project Planning Process, Establishing	f 6	15		

	Project organization, role of Project Manager				
Π	Project screening and Selection Techniques - Structuring concepts and Tools - Work Breakdown Structure, Organisation Breakdown Structure, and Linear Responsibility Chart - Project Planning Tools- Bar charts, Line of Balance – Critical Path Method, and Project Evaluation and Review Technique- Risk Analysis and Management	10	15		
	First Internal Examination				
III	Types of Estimates and Estimating Methods- Capital Cost Estimation - Project Budgeting - Project cash flow analysis	6	15		
IV	Project Scheduling with Resource Constraints- Resource Leveling- Resource constrained scheduling with multiple resources- linear programming formulation – Introduction to staff scheduling and rostering	10	15		
	Second Internal Examination				
V	Monitoring Techniques and time control System- Project Cost Control -Time cost Tradeoff procedure, lowest cost schedule- Computer applications in project management	8	20		
VI	Management of Software Engineering Projects, New Product Development Projects, R&D Projects and Large Scale Construction Projects -Case Studies	8	20		
	End Semester Cluster Level Examination				

Course No.	Course Name	L-T-P: Credits	Year of Introduction		
10ME6326	DESIGN OF HEAT TRANSFER EQUIPMENTS	3-0-0: 3	2015		
Course Prerequ	isites				
Basic knowledg	ge of Heat transfer, Thermodynamics, Psychrometry, Mat	erial science	e and		
Manufacturing	process at UG/PG Level.				
Course Objectiv	es				
The course is	designed to provide a complete design knowledge o	f various	heat transfer		
equipments wh	ich are invariably used in most of the chemical process in	dustries.			
Syllabus					
-	nance analysis of heat exchangers - Design calculation		1 1		
exchanger, LMTD ,NTU and P-NTU Methods; Shell and tube heat exchangers- classification of					
shell and tube exchangers-The Circulating Water System-Introduction-System Classification-Wet					
Cooling Towers-	Cooling Towers-Dry cooling towers- Heat Pipes Types and Applications-Capillary Limitation and				
Temperature Characteristics - Sonic, Entrainment, and Boiling Limitations- Heat pipe design -					
Fluid, Wick and Material Selection- Heat Pipe Design Procedure-Design Problems.					
1	Expected Outcomes				
This subject e	xposes students to the practical applications of the	fundamenta	al laws using		
Thermodynami	Thermodynamics, Heat transfer, Material sciences and Manufacturing processes. This course will				
provide a gist of the theory behind the heat transfer equipments and will emphasize direct					

applications of theory to design.

References

- 1. R K Shah, Fundamentals of Heat Exchanger Design, John Wiley & Sons.
- 2. Chi, S. W., Heat Pipe Theory and Practice- A Source Book, McGraw-Hill, 1976
- 3. Reay, D.A., Kew, P.A., Heat pipes, fifth edition, Butterworth-Heinemann publications, 2006.
- 4. Fraas, A. P., Heat Exchanger Design, Second Edition, John Wiley & Sons, 1989.
- 5. Dunn, P. D. and Reay, D. A., Heat Pipes, Fourth Edition, Pergamon Press, 1994.
- 6. El Wakil., Power Plant Technology, McGraw Hill.
- 7. Das, S.K., Prosess heat transfer, Narosa publishing house.2005

Course Plan

Module	Content	Hours	Semester Exam Marks (%)	
	Heat Exchangers: Meaning, Classification, Significance, Applications and Selection	4		
I	Thermal Performance Analysis of Heat Exchangers : compact, cross flow, liquid to gas, and double pipe heat exchangers, film coefficients for tubes and annuli, equivalent diameter of annuli, fouling factors, caloric or average fluid temperature, true temperature difference.	4	15	
II	Design calculation of double pipe heat exchanger : LMTD ,NTU and P-NTU Methods.	8	15	
	First Internal Examination	1		
III	Shell and tube heat exchangers: classification of shell and tube exchangers.	8	15	
IV	The Circulating Water System: Introduction-System Classification-The Circulation System-Wet Cooling Towers-Wet Cooling Tower Calculations-Dry cooling towers.	8	15	
	Second Internal Examination			
	Heat Pipe Types and Applications: Heat pipe invention and Operating principles-Working fluids-Wick structures-Control Techniques-Applications.	4		
V	Capillary Limitation and Temperature Characteristics: Pressure balance- Maximum capillary pressure-Liquid and Vapor pressure drops- Effective thermal conductivity of wick structures- Capillary limitation on heat transport capability-Heat Pipe Temperature Characteristics.	5	20	
	Sonic, Entrainment and Boiling Limitations: Introduction-Sonic Limitation-Entrainment Limitation-Boiling Limitation.	3		
VI	Heat Pipe Design – Fluid selection- Wick selection- Material selection- Preliminary Design Considerations.	3	20	
	Heat Pipe Design Procedure: Introduction- Heat Pipe Diameter- Design of Heat Pipe Containers- Wick design-Entertainment and Boiling limitations-Design Problems.	3		
Cluster Level End Semester Examination				

Course	e No.	Course Name	L-T-P: Credits	Year of Introduction		
10ME6	5328	RENEWABLE ENERGY SYSTEMS	3-0-0: 3	2015		
Basic k	Course Prerequisites Basic knowledge of Solar energy, Biomass and other renewable energy UG Level.					
The cou	 Course Objectives The course is designed To provide students a strong background in the concept of renewable energy such as solar energy, wind energy, biomass, etc. To develop ability for designing renewable/hybrid energy systems that meet specific energy demands, are economically feasible and have a minimal impact on the environment 					
Thermal	energy s	gy sources in India, Solar energy, Utilization ,Measur storage, Wind energy, Biofuels, Biogas production, Geotl ve energy.				
Expected The stu usage.		mes re expected to understand the concept and application of	renewabl	e energy and		
 G.D Ra S.P Sul Godfre Twidel Tiwary House, N 	 References 1. G.D Rai :Non conventional Energy Sources. Khanna Publishers, New Delhi 2. S.P Sukhatme : Solar Energy. Tata McGraw Hill Publishing company Ltd, New Delhi 3. Godfrey Boyle : Renewable energy, Power for a sustainable future. Oxford University Press U.K 4. Twidell J W & Weir A : Renewable energy sources. 2nd edition, Taylor & Francis London, UK 5. Tiwary :Solar Energy: Fundamentals, Design, Modeling and Applications, . Narosa Publishing House, New Delhi 6. Ibrahim Dincer :Thermal Energy Storage: Systems and Applications, John Willey, UK. 					
Module		Content	Hour s	Semester Exam Marks (%)		
Ι	aspects	energy use – Reserves of energy resources – Environmenta of energy utilisation – Renewable energy scenario in India ntials – Achievements – Applications		15		
Π		energy, Measurement and collection flat plate collectors trating collectors, solar ponds, photovoltaic conversion	' 8	15		
	Th	First Internal Examination				
III		al Energy storage Thermal energy storage methods e heat storage, Latent energy storage, Phase change storage udies	-	15		

IV	Wind energy, principle, potential and status, Wind characteristics, National wind atlas, Theory of wind turbine wind blades, Types of wind turbines, and charecteristics	6	15		
	Second Internal Examination				
V	Bio fuels Sources, potential, Properties and characterization, Bio gas generation through Aerobic and Anaeorobic digestion, Thermo-chemical methods biofuel utilisation, Combustion and gasification	6	20		
VI	Tidal energy – Wave energy – Open and closed OTEC Cycles – Small hydro –Geothermal energy – Fuel cell systemsWind data and energy estimation – Types of wind energy systems – Performance – Details of wind turbine generator – Safety and Environmental Aspects. Biomass direct combustion – Biomass gasifier – Biogas plant – Ethanol production – Bio diesel – Cogeneration – Biomass applications	10	20		
	Cluster Level End Semester Examination				

Course No.	Course Name	L-T-P: Credits	Year of Introduction		
10ME6432	INDUSTRIAL REFRIGERATION SYSTEM	3-0-0: 3	2015		
Course Prerequi					
	to evaluate thermodynamic and fluid parameters of refrig				
	ermodynamic parameters of refrigeration and air conditio	ning systen	1S.		
Course Objectiv					
	nd the key issues in Industrial Refrigeration systems.				
	nd the operational features of compressors in large system		· · · · · · · · · · · · · · · · · · ·		
	tand the operational features of Evaporators & C	ondensers	in Industrial		
Refrigeratio		· · · · ·			
	- To understand the energy conservation aspects of Industrial Refrigeration System.				
Introduction to	Syllabus Introduction to industrial refrigeration, types of compressors and applications, evaporators and liquid circulation methods, lubricating oils and its properties, vessels in industrial refrigeration,				
energy conservation and design considerations.					
Expected Outcomes					
The students will be able to demonstrate knowledge of industrial refrigeration systems,					
investigate and select components for industrial refrigeration systems.					
References					
1. Wilbert F.Stoe	cker, Industrial Refrigeration Hand Book, McGraw-Hill,	1998.			
2. ASHRAE Han	d Book: Fundamentals, 1997.				
3. ASHRAE Han	3. ASHRAE Hand Book: Refrigeration, 1998.				

4. ASHRAE Hand Book: HVAC Systems and Equipment, 1996.

5. Transport properties of SUVA Refrigerants, Du-Pont Chemicals, 1993

Module	Content	Hour s	Semester Exam Marks (%)
I	Introduction to industrial refrigeration - difference from conventional system - applications - industrial and comfort air - conditioning - conditions for high COP.	6	15
П	Industrial Compressors: Reciprocating and screw compressor, Multistage industrial applications, cylinder arrangement, cool methods - oil injection and refrigeration injection, capacity regulations - Economizers.	10	15
	First Internal Examination		
III	Liquid circulation & feeding systems Liquid circulation: Mechanical pumping and gas pumping - advantage and disadvantage of liquid re-circulation - circulation ratio - top feed and bottom feed refrigerant - Net Positive Suction Head (NPSH) - two pumping vessel system - suction risers – design - piping loses.	8	15
IV	Industrial Condensers & Evaporators Different Industrial Condensers arrangement, Evaporators-Types and arrangement, liquid circulation, type of feed, refrigerant piping design, functional aspects. Lubricating oil: types - physical properties, types of circulation and oil separator.	8	15
	Second Internal Examination		
V	Vessels in industrial refrigeration: High pressure receiver - flash tank - liquid and vapour separator - separation enhancers - low pressure receivers - surge drum - surge line accumulator – thermo syphon receiver - oil pots.	8	20
VI	Energy conservation & aspects: Energy conservation and design considerations - source of losses - energy efficient components - heat reclaim - thermal storage: ice builder and ice harvester. Insulation: critical thickness - insulation cost and energy cost - vapor barriers – construction methods of refrigerated spaces	8	20

Course	e No.	Course Name	L-T-P: Credits	Year of Introduction			
10ME	6334	ADVANCED GAS DYNAMICS	3-0-0: 3	2015			
	Course Prerequisites						
Course C		to undergraduate level thermodynamics and gas dynamics	•				
		he compressible flow with friction and heat transfer.					
• T	o know 1	the application of normal shock & their governing equation	S.				
Syllabus							
		nocks, Governing equations ,Generalized One-Dimensional	,				
		act, general principles and characteristics, interaction and a	reflection of	of shocks,			
Expected		ow ,various flow visualization techniques					
-		etween various flow regimes.					
		low under different flow conditions.					
To asses	ss the flo	w behavior and consequent loads due to flow.					
3.A. H volun	I. Shap nes),The	Compressible Fluid Flow, Prentice-Hall, New Jersey, 1985. iro, The Dynamics and Thermodynamics of Compre Ronald Press, New York, 1953. Funnel Design		uid Flow (2			
Module		Content	Contact Hours	Semester Exam Marks (%)			
Ι	Norma Prandtl normal nozzle	Sonic Flow: I Shocks - Governing equations, Rankine Huguenot, and other relations, weak shocks, thickness of shocks, shocks in ducts, performance of convergent divergent with shocks, moving shock waves, shock problems in one ional supersonic diffuser, supersonic pitot tube.	12	15			
Π	Flow in Flow in workin perform in Con equation	n Constant Area Duct under different conditions: n Constant Area Duct with Friction: Governing equations, g formulas and tables, choking due to friction, nance of long ducts, Isothermal flow in long ducts. Flow stant Area Duct with Heating and Cooling: Governing ons, working formula and tables, choice of end states, g effects, shock waves with changes in stagnation	8	15			
		First Internal Examination					
Ш	Genera	alized One-Dimensional Flow:	6	15			

Working equations, general method of solution, example of

	combined friction and area change, Example of combined friction		
	and heat transfer		
IV	Oblique shock: Governing physical equations and general relations, shock polar diagram and auxiliary diagrams, strong and weak shocks, detached shock, interaction and reflection of shocks.	6	15
	Second Internal Examination		
V	Method of characteristics flows & its applications: General principle of integration using method of characteristics, application to one dimensional isentropic progressive waves, application to steady two dimensional irrotational isentropic supersonic flows, Prandtl-Meyer expansion	6	20
VI	Boundary layer flow and various flow techniques: Boundary layer flow with Prandtl number unity and arbitrary Prandtl number, Integral equations of Laminar boundary layer, Differential and integral equations of Boundary layer, flow past a flat plate with turbulent Prandtl number of Unity. Elementary idea of boundary layer in tubes and in the presence of shock waves. Study of various flow visualization techniques. Study of different types of wind tunnels, their design criteria.	10	20
	Cluster Level End Semester Examination		

Course No.	Course Name	L-T-P- Credits	Year of Introduction		
10ME6436	COMPUTATIONAL FLUID FLOW AND HEAT TRANSFER	3-0-0- 3	2015		
Course Prerequi	isites				
Basic knowledge	of Numerical methods, Fluid mechanics and Heat transfe	r.			
Course Objectiv	es:				
	the mechanism of computational fluid dynamics and significant significant in engineering application.	ificance of o	computational		
• To impart	t knowledge in discretization approach of computationa on the computation result.	l fluid dyn	amics and its		
• Understan	d the numerical algorithm of computational fluid dynar rgence of the computation	nics and its	influence on		
Syllabus					
Basic equations o	f fluid dynamics and heat transfer, wave equations for sta	bility, One	dimensional		
steady state, Discretization, Finite volume method for diffusion and convection diffusion problems					
Algorithms, Higher order schemes.					
Expected Outcomes					

The students will be able to

- Understand the mechanism of computational fluid dynamics and significance of computational fluid dynamics in engineering application, such as turbine engineering and nuclear engineering.
- Understand the discretization approach of computational fluid dynamics and its influence on the computation result.
- Understand the numerical algorithm of computational fluid dynamics and its influence on the convergence of the computation.

References

1. Numerical Heat Transfer and Fluid Flow- S V Patankar

2. Computational Fluid Mechanics and Heat Transfer- D A Anderson, Tannehill J C & Pletcher.

3. Computational Fluid Dynamics in Practice-Rhodes

4. Muraleedhar, K. and Sundararajan, T. (eds.), Computational Fluid Flow and Heat Transfer, Second Edition, Narosa Publishing House, 2003.

5. Versteeg, H. K. and W. Malalasekera, W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Addison Wesley – Longman, 1995

Module	Content	Hour s	Semester Exam Marks (%)			
I	Introduction: Basic equations of fluid dynamics and heat transfer-nature of terms-physical and mathematical classification- boundary and initial conditions-Taylor series representation finite difference approximation for space and time-forward, central and backward differences	8	15			
П	Analysis of 1D heat and wave equations for stability- Courant- Friedrich-Lewy criterion-Laplace and Poisson's equations in curvilinear coordinates-Grid generation: Elliptical and hyperbolic grids.	8	15			
	First Internal Examination					
Ш	Numerical Heat Conduction: One dimensional steady state problem-governing equation boundary condition(prescribed, convective and radiative). Method of solution: Gauss elimination, Gauss Seidel-Tridiagonal Matrix algorithm. Jacobi-over and under relaxation. Two dimensional steady state problem	8	15			
IV	Diffusion problems: Method of solution-line by line method-Three dimensional problem-plane by plane method-transient 1D problem-Discretization: explicit, Crank-Nicholson and implicit methods-Two and Three dimensional transient conduction problems- grid independence test- axisymmetric problem-conduction through composite media-variable thermal conductivity-irregular geometries.	8	20			

	Second Internal Examination				
V	Convective Heat Transfer: Finite volume method for diffusion and convection diffusion problems- steady one dimensional convection and diffusion equation-upwind, hybrid and power-law schemes-Discretization equation for 1,2 and 3 dimensions- false diffusion calculation of flow field	6	15		
VI	Flow field calculation: Algorithms for pressure velocity coupling- semi implicit method for pressure linked equation-its variants such as SIMPER, SIMPLEC and SIMPLEST. Higher order schemes-quick solution of 2D flow problems in rectangular and cylindrical coordinate systems-treatment for natural convection-Natural convective flow in rectangular and cylindrical enclosures- evaluation of Nusselt's number.	10	20		
	Cluster Level End Semester Examination				

10ME6408MINI PROJECT $0 - 0 - 2 - 2$ 22015Course Prerequisites (1) The habit of reading technical magazines, conference proceedings and journals; (2) Skills in hardware/software implementation techniques earned through UG studies. (3) Seminar ICourse Objectives(1) To support the problem based learning approach and to enhance the reading taking the students; (2) To enhance the skills regarding the implementation aspects of small habit among students; (2) To enhance the skills regarding the implementation aspects of small habit among students; Leach student has to do a mini project related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing <i>problem based learning</i> . Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given	Course No.	Course Name	L - T - P - Credits	Year of Introduction		
 (1) The habit of reading technical magazines, conference proceedings and journals; (2) Skills in hardware/software implementation techniques earned through UG studies. (3) Seminar I Course Objectives (1) To support the problem based learning approach and to enhance the reading habit among students; (2) To enhance the skills regarding the implementation aspects of small hardware/software projects. Guidelines Each student has to do a mini project related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing <i>problem based learning</i>. Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given 	10ME6408	MINI PROJECT		2015		
 (2) Skills in hardware/software implementation techniques earned through UG studies. (3) Seminar I Course Objectives (1) To support the problem based learning approach and to enhance the reading habit among students; (2) To enhance the skills regarding the implementation aspects of small hardware/software projects. Guidelines Each student has to do a mini project related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing <i>problem based learning</i>. Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given 			and journals.			
 (3) Seminar I Course Objectives (1) To support the problem based learning approach and to enhance the reading habit among students; (2) To enhance the skills regarding the implementation aspects of small hardware/software projects. Guidelines Each student has to do a mini project related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing <i>problem based learning</i>. Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given 			•			
 (1) To support the problem based learning approach and to enhance the reading habit among students; (2) To enhance the skills regarding the implementation aspects of small hardware/software projects. Guidelines Each student has to do a mini project related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing <i>problem based learning</i>. Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given		1 1	0			
 students; (2) To enhance the skills regarding the implementation aspects of small hardware/software projects. Guidelines Each student has to do a mini project related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing <i>problem based learning</i>. Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given 	U					
 (2) To enhance the skills regarding the implementation aspects of small hardware/software projects. Guidelines Each student has to do a mini project related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing <i>problem based learning</i>. Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given 		ort the problem based learning approach and to enhance	e the reading	g habit among		
projects. Guidelines Each student has to do a mini project related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing <i>problem based learning</i> . Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given	· · · · ·		0 11 1	1 / 2		
Guidelines Each student has to do a mini project related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing <i>problem based learning</i> . Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given	. ,	nce the skills regarding the implementation aspects	of small hard	dware/software		
Each student has to do a mini project related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing <i>problem based learning</i> . Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given	V					
a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing <i>problem based learning</i> . Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given		1 . 1	1 .	1 . 1 . 0		
is recommended that the same faculty member may serve as his/her Project Supervisor during 3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing <i>problem based learning</i> . Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given		1 5 1		•		
3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing <i>problem based learning</i> . Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given	-		•			
the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing <i>problem based learning</i> . Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given						
student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing <i>problem based learning</i> . Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given						
implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing <i>problem based learning</i> . Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given						
envisaged as a way for implementing <i>problem based learning</i> . Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given						
and/or problems identified by the institute/ research organizations/ industry/ state should be given	1 1 5					
high priority. In such interdisciplinary and inter institutional projects, a student can have co-						
guide(s) from other department/ institute/ research organizations/ industry. The university						

encourages *interdisciplinary projects* and *problem based learning strategy*. References cited shall be authentic.

Expected Outcomes

The students are expected to :

(1) Develop skills regarding enumerating and selecting problems, subsequent analysis, and effective implementation of the solution;

(2) Be motivated and successful in the selection of the topic for the main project.

References

- 1. J.W. Bames, Statistical Analysis for Engineers and Scientists, McGraw Hill, New York.
- 2. Schank Fr., Theories of Engineering Experiments, Tata McGraw Hill Publication.
- 3. Douglas C Montgomery, Design and analysis of experiments, Wiley International
- 4. Leedy P D, *Practical Research : Planning and Design*, 4th Edition, N W MacMillan Publishing Co

Course plan				
Item	Description	Time		
1	Abstract Submission	2 Week		
2	Allotment of Topic	1 Week		
3	Preliminary Presentation Sessions	1 Week		
4	Implementation Phase	9 Weeks		
5	Final Presentation-cum Demonstration	1 Week		

Course No.	Course Name	L-T-P: Credits	Year of Introduction		
10ME6412	ADVANCED HEAT TRANSFER LAB	0-0-2:1	2015		
Course Prerequi	sites: None				
Course Objective	S				
Practica	l training for conducting experiments related to advanced	heat transf	er.		
Applyin	g scientific and engineering principles to analyze and de	sign thermo	o fluid aspects		
of system	ns		_		
To invest	stigate heat and mass transport phenomenon				
To Inter	pret results of investigations related to heat transfer, fluid	flow and the	hermal design		
List of Experime	ents		<u> </u>		
Experimental An	alysis of Heat Transfer Problems - Use of Data Acquisiti	on System.			
Experiments shal	l include	-			
i) Forced convect	ion				
ii) Natural convection					
iii) Heat pipe heat transfer					
iv) Drop wise / Film wise condensation					
v) Extended surfa	ce heat transfer				

vi) Shell and tube heat exchanger

vii) Wall solar chimney

Expected Outcomes. After completion if this course

• The students will have a deep and broad understanding of heat transfer and fluid flow

Assessment :

- i) Practical Records /outputs 40%
- ii) Regular Class Viva-Voce 20%
- iii) Final Test (Objective) 40%

SEMESTER 111

Course	No.	Course Name	L-T-P: Credits	Year of Introduction	
10ME7	7305	CRYOGENIC ENGINEERING	3-0-0: 3	2015	
Course P Basic ki UG/PG	nowledg	sites ge of Thermodynamics, Heat Transfer, Fluid Flow and Med	chanics of	Solids at	
Course O The co	bjectiv urse is ges of cr	designed to provide students an introduction to the e yogenics, design and analysis of the systems used to produce		1	
liquefac Neon, separati transfer	tion system hydroge on and j system	cryogenic systems- Low temperature properties of eng stems: Production of low temperatures- liquefaction syste on and helium- Liquefaction system for Neon, Hydro purification system - Cryogenic Refrigeration systems- cry ons- storage vessels and insulation- Introduction to Cryogenic Systems.	em for gas ogen and ogenic flui	es other than Helium- Gas id storage and	
Expected The stue	Outco dents ar		nalysis of	systems used	
 Cryoge Cryoge Cryoge Cryoge Timme 1989. Vance 	References 1. Cryogenic Systems – Randall Barron 2. Cryogenic Engineering- R.B.Scott 3. Cryogenic Engineering – J.H.Bell Jr. 4. Timmerhaus, K. D. and Flynn, T. M., Cryogenic Process Engineering, Plenum Press,				
		Course Plan			
Module		Content	Hours	Semester Exam Marks (%)	
	Prese	eduction to Cryogenic Systems: Historical development ent areas involving cryogenic engineering.	3	1.5	
Ι	Mech magr	Temperature Properties of Engineering Material nanical properties-Thermal properties - Electric ar netic properties-Properties of cryogenic fluids.	nd 5	15	
П	parar	Liquefaction Systems: Introduction-System performance neters- Thermodynamically ideal system-Production of lo eratures- Joule Thomson effect, Adiabatic expansion	1	15	
	Liqu	efaction system for gases other than Neon, Hydroge Helium:simplelindehampson, precooled lindehampson			

	linde dual pressure system-cascade system-claude system- kapitza system-heylandtz system-Liquefaction system for Neon, Hydrogen and Helium:precooledlindehampson system, claudesystemorthopara hydrogen conversion in the liquifier, collins helium liquifiersystem.			
	First Internal Examination			
III	Gas Separation and Purification: Thermodynamically ideal separation system-principles of rectfication-Air seperationsystem:Linde single column and double column system.	8	15	
IV	Cryogenic Refrigeration Systems: Ideal Refrigeration systems- Refrigerators using liquids and gases as refrigerants:Joule Thomson, cascade, expansin engine Refrigeration system-philips refrigerators-A.D.Little single volume and double volume refrigerator-Refrigerators using solids as working media:Magnetic refrigeration system.	8	15	
Second Internal Examination				
	Cryogenic Fluid Storage and Transfer Systems: Fluid storage vessels-Basic storage vessel-Inner vessel design-Outer vessel design-Suspension system-Safety devices.	4		
V	Insulation: Expanded foam-gas filled powder and fibrous- vacuum insulation-Evacuated powder and fibrous-o pacified powder and multilayer insulation-Comparison of insulation performance.	5	20	
	Cryogenic Fluid Transfer Systems: Uninsulated lines-porous insulated lines-Vacuum insulated lines-Two phase flow in cryogenic fluid transfer system-Cool down process.	3		
VI	Introduction to Vacuum Technology in Cryogenics: Importance of vacuum technology in cryogenics-Calculation of pump down time-Cryo pumping.	3	20	
	Application of Cryogenic Systems: Superconductive devices, Cryogenics in Space technology, Bilogy and Medicine.	3		
	Cluster Level End Semester Examination			

Course No.	Course Name	L-T-P: Credits	Year of Introduction		
10ME7307	DESIGN AND ANALYSIS OF TURBOMACHINES	3-0-0: 3	2015		
Course Prerequisites Knowledge of Fluid Mechanics and machineries at UG/PG Level.					
Course Objectives To impart knowledge on various types of turbo machines and their operation, flow mechanism through the impeller, methods of their performance evaluation under various operation					

conditio	DNS.					
Syllabus						
v	isentropic flow – static and stagnation properties – diffuser and n	ozzle co	nfigurations,			
	Centrifugal and axial flow compressors, configuration, working, velocity diagrams, Combustion					
	bustion chamber, Axial and radial flow turbines, Gas turbines, Jet eng					
Exnected	Outcomes					
-	ergoing the course, one will be able to understand the working of va	arious tu	rbomachines			
	ifferent operating conditions and will be able to design a system for					
	en conditions.	1	I			
Referenc						
1. Ganesa	n, V., Gas Turbines, Tata McGrawHill, 2011.					
2. Khajur	ia P.R and Dubey S.P., Gas Turbines and Propulsive Systems, Dha	npatRai	Publications,			
2003						
	, H., Rogers, G F C and Saravanmotto, H I H, Gas Turbine Theo	ory, Johi	n Wiely, 5th			
	1 2001.					
	G and Peterson C R, Mechanics and Thermodynamics of Propulsio	on, Addi	tion-Wesley,			
1970.	aly I.D. Elements of Cas turking Propulsion McCrow Hill 1st Editio	n 1007				
5. Matting	gly J D, Elements of Gas turbine Propulsion, McGraw Hill, 1st Editio	n. 1997				
	Course Plan					
			Semester			
Module	Content	Hours	Exam			
			Marks (%)			
	Introduction					
	Pasias of isontropia flow statia and stagnation properties					
	Basics of isentropic flow – static and stagnation properties –					
	diffuser and nozzle configurations - area ratio - mass flow rate -					
I	diffuser and nozzle configurations – area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity	12	15			
I	diffuser and nozzle configurations – area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbomachines - velocity diagrams.	12	15			
I	diffuser and nozzle configurations – area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbomachines - velocity diagrams. Euler's equation for turbomachines and its different forms. Degree	12	15			
Ι	diffuser and nozzle configurations – area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbomachines - velocity diagrams. Euler's equation for turbomachines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic,	12	15			
I	diffuser and nozzle configurations – area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbomachines - velocity diagrams. Euler's equation for turbomachines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and poly tropic	12	15			
I	diffuser and nozzle configurations – area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbomachines - velocity diagrams. Euler's equation for turbomachines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and poly tropic Centrifugal and axial flow compressors	12	15			
	diffuser and nozzle configurations – area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbomachines - velocity diagrams. Euler's equation for turbomachines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and poly tropic Centrifugal and axial flow compressors Centrifugal compressor - configuration and working – slip factor -					
I	diffuser and nozzle configurations – area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbomachines - velocity diagrams. Euler's equation for turbomachines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and poly tropic Centrifugal and axial flow compressors Centrifugal compressor - configuration and working – slip factor - work input factor – ideal and actual work - pressure coefficient -	12	15			
	diffuser and nozzle configurations – area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbomachines - velocity diagrams. Euler's equation for turbomachines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and poly tropic Centrifugal and axial flow compressors Centrifugal compressor - configuration and working – slip factor - work input factor – ideal and actual work - pressure coefficient - pressure ratio. Axial flow compressor – geometry and working –					
	diffuser and nozzle configurations – area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbomachines - velocity diagrams. Euler's equation for turbomachines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and poly tropic Centrifugal and axial flow compressors Centrifugal compressor - configuration and working – slip factor - work input factor – ideal and actual work - pressure coefficient -					
	diffuser and nozzle configurations – area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbomachines - velocity diagrams. Euler's equation for turbomachines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and poly tropic Centrifugal and axial flow compressors Centrifugal compressor - configuration and working – slip factor - work input factor – ideal and actual work - pressure coefficient - pressure ratio. Axial flow compressor – geometry and working – velocity diagrams – ideal and actual work – stage pressure ratio -					
	diffuser and nozzle configurations – area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbomachines - velocity diagrams. Euler's equation for turbomachines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and poly tropic Centrifugal and axial flow compressors Centrifugal compressor - configuration and working – slip factor - work input factor – ideal and actual work - pressure coefficient - pressure ratio. Axial flow compressor – geometry and working – velocity diagrams – ideal and actual work – stage pressure ratio - free vortex theory – performance curves and losses First Internal Examination Combustion and Combustion chamber					
II	diffuser and nozzle configurations – area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbomachines - velocity diagrams. Euler's equation for turbomachines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and poly tropic Centrifugal and axial flow compressors Centrifugal compressor - configuration and working – slip factor - work input factor – ideal and actual work - pressure coefficient - pressure ratio. Axial flow compressor – geometry and working – velocity diagrams – ideal and actual work – stage pressure ratio - free vortex theory – performance curves and losses First Internal Examination Combustion and Combustion chamber Basics of combustion. Structure and working of combustion	11	15			
	diffuser and nozzle configurations – area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbomachines - velocity diagrams. Euler's equation for turbomachines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and poly tropic Centrifugal and axial flow compressors Centrifugal compressor - configuration and working – slip factor - work input factor – ideal and actual work - pressure coefficient - pressure ratio. Axial flow compressor – geometry and working – velocity diagrams – ideal and actual work – stage pressure ratio - free vortex theory – performance curves and losses First Internal Examination Combustion and Combustion chamber Basics of combustion. Structure and working of combustion chamber – combustion chamber arrangements - flame stability –					
II	diffuser and nozzle configurations – area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbomachines - velocity diagrams. Euler's equation for turbomachines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and poly tropic Centrifugal and axial flow compressors Centrifugal compressor - configuration and working – slip factor - work input factor – ideal and actual work - pressure coefficient - pressure ratio. Axial flow compressor – geometry and working – velocity diagrams – ideal and actual work – stage pressure ratio - free vortex theory – performance curves and losses First Internal Examination Combustion and Combustion chamber Basics of combustion. Structure and working of combustion chamber – combustion chamber arrangements - flame stability – fuel injection nozzles. Flame stabilization - cooling of combustion	11	15			
Π	diffuser and nozzle configurations – area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbomachines - velocity diagrams. Euler's equation for turbomachines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and poly tropic Centrifugal and axial flow compressors Centrifugal compressor - configuration and working – slip factor - work input factor – ideal and actual work - pressure coefficient - pressure ratio. Axial flow compressor – geometry and working – velocity diagrams – ideal and actual work – stage pressure ratio - free vortex theory – performance curves and losses First Internal Examination Combustion and Combustion chamber Basics of combustion. Structure and working of combustion chamber – combustion chamber arrangements - flame stability – fuel injection nozzles. Flame stabilization - cooling of combustion chamber	11	15			
Π	diffuser and nozzle configurations – area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbomachines - velocity diagrams. Euler's equation for turbomachines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and poly tropic Centrifugal and axial flow compressors Centrifugal compressor - configuration and working – slip factor - work input factor – ideal and actual work - pressure coefficient - pressure ratio. Axial flow compressor – geometry and working – velocity diagrams – ideal and actual work – stage pressure ratio - free vortex theory – performance curves and losses First Internal Examination Combustion and Combustion chamber Basics of combustion. Structure and working of combustion chamber – combustion chamber arrangements - flame stability – fuel injection nozzles. Flame stabilization - cooling of combustion	11	15			

staging - stage loading and flow coefficients. Degree of reaction -

	stage temperature and pressure ratios – single and twin spool arrangements – performance. Matching of components. Blade Cooling. Radial flow turbines		
	Second Internal Examination		
V	Gas turbine Gas turbine cycle analysis – simple and actual. Reheated, regenerative and intercooled cycles for power plants.	6	20
VI	Jet engine cycles Working of turbojet, turbofan, turboprop, ramjet, scramjet and pulsejet engines and cycle analysis – thrust, specific impulse, specific fuel consumption, thermal and propulsive efficiencies.	7	20
	Cluster Level End Semester Examination		

Course No.	Course Name	L-T-P: Credits	Year of Introduction
10ME7309	CONVECTION & TWO PHASE FLOW	3-0-0:3	2015
Course Prerequi			
	ge of thermodynamics, heat and mass transfer at UG/PG I	level.	
wall bounded f	is at imparting theoretical knowledge about the physics lows and two phase flow, and thereby, enable them to ta on heat transfer problems		
Syllabus			
transfer, Forcec patterns, Basic Fl		0	
Expected Outco			
-	nis course, students should be able to:		
11.2	he principles of thermodynamics, fluid mechanics and convective heat transfer and two phase flow problems.	heat transf	fer to analyze
Develop	o analytical models and solution methods to solve practic o confidence to undertake challenging research problems a	ind.	01
Make the	em to work with practiced professional or researcher grou	ips confider	nt
References			
	Boundary Layer Theory		
	I E Crawford : Convective Heat and Mass Transfer		
	ike; Analysis of Heat and Mass Transfer		
4. Bejan. A, Conv	vective Heat Transfer		

Module	Content	Hours	Semester Exam Marks (%)
I	Convectionheat transfer Equations: Conservation principles, differential equations of the boundary layer, Momentum, Mass diffusion and energy equations, simplified equations for velocity boundary layer and thermal boundary layer, integral equation of boundary layer, equations for turbulent boundary layer. Turbulent flow over a flat plate and a circular pipe universal velocity distribution	12	20
II	Convective heat transfer -Forced convection in laminar flow- flow inside smooth tubes-energy differential equations. Fully developed velocity and temperature profiles. Thermal entry length solutions for circular tubes-effect of axial variations of the surface temperature and heat flux-combined hydrodynamic and thermal entry length, the flat plate in Laminar flowsimilaritysolution-flow over bodies with boundary layer separation	10	15
	First Internal Examination		
ш	Forced convection in Turbulent flow . Analogy between momentum and heat transfer. Reynold's analogy, Karman- BoelteMartinelli analogy- circular tubes with fully developed flow, constant heat rate, modararePrandtl Numbers. The eddy diffusivity near the centre line of a pipe-Fully developed profiles with constant surface temperature-fully turbulent flow between parallel planes-Thermal entry length in circular tubes-Effect of axial variation of surface temperature and heat flux. Influence of surface roughness- The plane plate in longitudinal flow.	10	15
IV	Free Convection: Boundary layer equations-vertical semi infinite plate, constant and variable temperature, effect of wall suction and blowing and variable properties. Approximate Integral solutions for free convection, free convection flow regimes, free convection between heated plates, solution for other geometry, combined free and forced convection.	8	15
	Second Internal Examination		
V	Methods of Analysis of flow patterns Vertical and horizontal channels – flow pattern maps and transitions. Void fraction – definitions of multiphase flow parameters – one dimensional continuity, momentum and energy equation- Pressure gradient components: frictional, acceleration and gravitational	8	20
VI	Basic Flow Models: Homogeneous flow model-Pressure gradient-Two phase friction factor for laminar and turbulent flow-two phase viscosity-friction	6	20

-	Separated flow model-pressure gradient relationship- artinelli correlation – Parameter X and its evaluation	
	Cluster Level End Semester Examination	

Course	e No.	Course Name	L-T-P: Credits	Year of Introduction
10ME'	7411	GAS TURBINES	3-0-0: 3	2015
Course P Basic k	-			
Course C		e of thermodynamics, turbo machinery at UG/PG Level.		
		rt a basic concept of various types of gas turbines and its ap the student capable of designing different types of gas turb		3
Syllabus Introdu	ction to	gas turbines, gas turbine plants. Reheat and regeneration of turbines, salient feature of combustion chambers.		cation of gas
Expected • Th bot	l Outcon e studen th therm		-	
2. Shephe 3. S M Y	k J H: A erd D G ahya -Tu	xial flow turbines. Principles of Turbomachinery. Irbines, Compressors and Fans and Saravanamuttoo- Gas Turbine Theory Course Plan	_	
Module		Content	Hours	Semester Exam Marks (%)
I	Open improv	urbine Plants and closed circuit plants- gas turbine power cycles ements in the constant pressure cycle-open gas turbin with inter cooling.		15
П	inter-co efficier	and regeneration-effect of regeneration, reheating and poling on efficiency-effect of operating variables on therma acy, air rate and work ratio- advantages and disadvantage ed cycle gas turbine- semi-closed type gas turbine	.1 8	15
		First Internal Examination		
Ш		ations of gas turbines rbine applications in aircrafts, surface vehicles, electri	c 8	15

	power generation, petrochemical industries, cryogenics. Two dimensional cascade			
IV	Design of turbines The theory for the design of a turbine stage. Irreversibility's-losses in turbine stage-various efficiency for turbines- off design Performance. Three dimensional flows in axial turbo machines. Design of turbines	10	15	
	Second Internal Examination			
V	High temperature turbine stages-effect of high gas temperature- methods of cooling-high temperature materials-heat exchange in a cooled blade- ideal cooled stage –actual cooled stage	7	20	
VI	Salient features of various types of combustion chambers for gas turbine engines. Principles of combustion chamber design. Compressor turbine matching- general and simplified methods for equilibrium operations	8	15	
	Cluster Level End Semester Examination			

Course No.	Course Name	L-T-P: Credits	Year of Introduction			
10ME7313	CO GENERATION AND WASTE HEAT RECOVERY SYSTEMS	3-0-0: 3	2015			
Course Prerequi						
	ge of engineering thermodynamics at UG Level.					
	basic energy generation cycles. To detail about the con- ble areas of applications. To study the significance	ncept of co	generation its			
Syllabus						
Introduction to	waste heat recovery systems, cogeneration technologies	- Issues and	l applications,			
waste heat reco	very systems, economic analysis.					
Expected Outcom	mes					
recovery system	Ability to analyze the basic energy generation cycles, Understands the significance of waste heat recovery systems and the concept of cogeneration, its types and probable areas of applications, carryout its economic analysis.					
References						
1. Charles H Butl	er : Cogeneration. McGraw Hill Book Co.					
	The European Educational tool for Cogeneration.					
	Cogeneration-Heat and Power, Thermodynamics and Econ		ford			
	el ,London. Waste heat recovery, Chapman and Hal Publis					
5.SenguptaSubrat	a, Lee SS EDS, Waste heat utilisation and management.	Hemisphere	Washington			

	Course Plan		
Module	Content	Hours	Semester Exam Marks (%)
I	Introduction Introduction – principles of thermodynamics – cycles – topping – bottoming – combined cycle – organic ranking cycles – performance indices of cogeneration systems – waste heat recovery – sources and types – concept of tri generation.	8	15
п	Cogeneration technologies Configuration and thermodynamic performance – steam turbine cogeneration systems – gas turbine cogeneration systems – reciprocating IC engines cogeneration systems – combined cycles cogeneration systems – advanced cogeneration systems: fuel cell, Stirling engines etc	10	15
	First Internal Examination		
ш	Issues and applications of cogeneration technologies Cogeneration plants electrical interconnection issues – utility and cogeneration plant interconnection issues – applications of cogeneration in utility sector – industrial sector – building sector – rural sector – impacts of cogeneration plants – fuel, electricity and environment.	10	15
IV	Waste heat recovery systems Selection criteria for waste heat recovery technologies – recuperators – Regenerators – economizers – plate heat exchangers – thermic fluid heaters – Waste heat boilers – classification, location, service conditions, design Considerations – fluidized bed heat exchangers – heat pipe exchangers – heat pumps – sorption systems.	8	15
	Second Internal Examination		
V	Economics of analysis Investment cost - economic concept - measure of economic performance – procedure for economic analysis – examples –	6	20
VI	Procedure for optimized system selection and design load curves – sensitivity analysis – regulatory and financial frame work for cogeneration and waste heat recovery systems.	6	20
	Cluster Level End Semester Examination		

Course	No.	('ourse Name	L-T-P: Credits	Year of Introduction		
10ME7	7315	MODERN ENERGY CONVERSION SYSTEMS	8-0-0: 3	2015		
	Course Prerequisites Basic knowledge of Thermodynamic principles and renewable energy resources at UG/PG Level.					
Course C To provid processes Syllabus	bjectiv le an un of diffe	es derstanding of the thermo physical principles that govern er rent type	nergy conv	version		
Principl Biomas	es for s, Wind	conversion systems, Principles of Fuel cells, Principle f MHD, Nuclear energy sources, Conventional& Renew and Ocean power				
a variet	will pro y of app	vide a foundation for design analysis of energy conversion s lications.	systems er	ncountered in		
 George Duffie Meinel 	oombe: A Sutton: and Bec &Meine	An introduction to Direct Energy Conversion Direct Energy Conversion kmann: Solar Energy Thermal Processes I: Solar Energy val: Energy-Today & Tomorrow				
		Course Plan				
Module		Content	Hours	Semester Exam		
,				Marks (%)		
Ι	Thermo effect, materia	Energy conversion systems : Basic principles of pelectric generation and Thermionic generation-Seebeck Peltier effect and Thomson effect. The Diode-selection of ils-elementary principles of design- applications of chemical series-Thermionic generations	f 8			
I	Therma effect, materia electron Princip Selection practica conversion cell-the	belectric generation and Thermionic generation-Seebeck Peltier effect and Thomson effect. The Diode-selection of als-elementary principles of design- applications of chemical series-Thermionic generations oles of Fuel cells- Thermodynamics of the Fuel cells- on of fuel and operating conditions-constructional features al problems-state of the art and prospects. Photoelectric sion conceptual description of photo-voltaic effect-the solar e state of art of solar cells materials and prospects. V-P eristics of solar cell-applications –SODIS Method	f 8 f	Marks (%)		
	Therma effect, materia electron Princip Selection practica conversion cell-the	belectric generation and Thermionic generation-Seebeck Peltier effect and Thomson effect. The Diode-selection of als-elementary principles of design- applications of chemical series-Thermionic generations bles of Fuel cells - Thermodynamics of the Fuel cells- on of fuel and operating conditions-constructional features al problems-state of the art and prospects. Photoelectric sion conceptual description of photo-voltaic effect-the solar e state of art of solar cells materials and prospects. V-	f 8 f	Marks (%) 15		
	Therma effect, materia electroo Princip Selectio practica convers cell-the charact Princip choice conduc develop drawba	Delectric generation and Thermionic generation-Seebeck Peltier effect and Thomson effect. The Diode-selection of als-elementary principles of design- applications of chemical series-Thermionic generations Des of Fuel cells- Thermodynamics of the Fuel cells- on of fuel and operating conditions-constructional features al problems-state of the art and prospects. Photoelectric sion conceptual description of photo-voltaic effect-the solar e state of art of solar cells materials and prospects. V-I eristics of solar cell-applications –SODIS Method First Internal Examination De of MHD generation-the Faraday and Hall generators- of generator parameters-Magnetic field requirements-		Marks (%) 15		

	principles-fuels, moderators and reactor materials-constructional features, safety and waste disposal. Nuclear Fusion;-Fuels and Reactions-sustained fusion reaction-practical aspects-containment- production of plasma-state of the art of fusion power. evolution of nuclear energy in India		
V	Second Internal Examination Renewable Energy sources : Solar energy:-Installation data- collectors and concentrators design, fabrication and performance of flat plate collectors-solar thermal devices (stills, water heaters, furnaces, solar cookers, solar refrigerators)-solar thermal power generation systems thermal storage. Biomass: Methods of beneficiation and utilization – pyrolysis, wood distillation, briquetting, gasifiers – energy plantations and fast growing varieties. working of P-V systems.	10	20
VI	Bio-Gas: Socio-economic relevance – technical data-recent developments in designs. Ocean power: Principles of ducts and OWC converters-evaluation of the potential in India of wave and tidal power- principle of OTEC system. Wind power : Survey of wind energy conversion systems-the wind map of India- wind turbine- pump coupled systems- wind turbine -generator systems.	8	20
	Cluster Level End Semester Examination		

Course No.	Course Name	L-T-P: Credits	Year of Introduction				
10ME7417	STEAM TURBINES	3-0-0: 3	2015				
	Course Prerequisites Basic knowledge of hydraulic machines at UG Level.						
The course is de	Course Objectives The course is designed to provide a strong background in the concept of design of steam engine in detail with design of flow passes, nozzles, and blade profiles						
51	urbines, working cycle and efficiency, Design of nozzles, ance of steam engines and control of steam turbines.	Design of t	urbine flow				
The students v	Expected Outcomes The students will be able to demonstrate and understanding of the main factors and design limitation that influence energy generation using steam turbines						
References1. Theory and des2. Steam Turbine	sign of Steam and Gas Turbines-John Flee Theory and Practice- W J Kearton Furbines- R Yadav						

	Course Plan		
Module	Content	Hours	Semester Exam Marks (%)
I	Steam turbines types , working cycle and efficiency Steam turbine types and working cycles- classification. Steam turbine cycles- Carnot cycle, rankine cycle, Reheat cycle, regenerative cycle-Effect of temperature and pressure on cycle efficiency- Thermal efficiency-Heat rate and Steam rate- Mechanical efficiency-Engine efficiency	12	15
Ш	Design of nozzles -nozzle construction-critical pressure ratio- nozzle losses-divergence and position angles-wet steam-super saturated steam-shock waves in nozzles-nozzle discharge coefficients-nozzle calculations. Compounding of steam turbines	8	15
	First Internal Examination		
ш	Design of Turbine Flow passages -isentropic velocity ratio- energy distribution in turbines effect of carry over velocity and energy distribution. Impulse flow turbine passages- Impulse blade profiles- Blade pitch and width. Blade height-blade entrance and exit angles-angle of efflux-geometry of blades	6	15
IV	Blade profiles. Reaction turbine flow passages-reaction blade profiles, blade angles, blade pitch, -losses in reaction blade passages. Flow passages with radial equilibrium-steam turbine control and performance.	6	15
	Second Internal Examination		
V	Control of steam turbines : control and supervisory instruments- principles of governing-direct acting speed responsive governors- characteristics of the simple speed responsive governor-speed responsive governors with servomotors- hydraulic speed- responsive governors with servomotors-pressure regulators-speed regulation and parallel operation. Emergency governors	6	20
VI	Performance of steam turbines: Effect of throttle governing, effect of initial pressure and temperature changes, effect of nozzle governing-Parsons number and quality factor-performance of automatic extraction turbines-performance of mixed pressure turbine AC generator. Cluster Level End Semester Examination	10	20

Course	e No.	Course Name	L-T-P: Credits	Year of Introduction
10ME	7419		3-0-0: 3	2015
Course P	-			
Course C		e of Psychrometry, refrigeration and air-conditioning at UC	J Level.	
• T • T • T	he course o impart	e is designed to provide an understanding of air properties a a strong background in the HAVC systems, design and app various types of AC systems		ort conditions
Syllabus				
		General Principles of air-conditioning, design and application	ons of HV	AC systems.
•	The stuc specific The stuc	lents will acquire ability to perform Psychrometric analysis HVAC system. lent will be able to design an AC system for the required will be in a position to minimize the total energy use		
2. Gun 3. Stoe	ris NC : ther R C eker W F	Air conditioning practice : Air conditioning and cold storage : Refrigeration and Air conditioning and Ventilation of Bundle and Data Book	ildings	
Module		Content	Hours	Semester Exam Marks (%)
Ι	enthalp	ies of moist air-Psychrometry, Psychrometric chart on y concentration and temperature concentration scales		15
Π		is of Psychrometric processes ; sensible heating and , Humidification and Dehumidification, sensible heat ratio	8	15
		First Internal Examination	-	
III	humidi	er winter cycles. Air Heating and cooling, Air washers- fication. Air filtering equipments and unitary equipment.	10	15
IV	system: system	nditioning systems: DX system, all water systems, all air s-air water systems, heat pump system, central and unitary s, fan coil systems. Air movement in rooms, Air ition devices, Air curtains.	10	15
		Second Internal Examination		1
V	Estimat Conditi	tion of cooling load and duct design tion of cooling load, duct design; Special purpose Air ioning such as theatres, computer room, school, libraries, s, aircraft and ships	10	20

VI	Automatic controls Automatic controls of air conditioning systems, thermostats, dampers and damper motors, automatic valves. Noise control and acoustic problems.		20	
Cluster Level End Semester Examination				

Course	e No.	Course Name	L-T-P: Credits	Year of Introduction				
10ME	7421	FINITE ELEMENT ANALYSIS FOR HEAT TRANSFER	3-0-0: 3	2015				
	Course Prerequisites							
		e of heat transfer at UG/PG Level.						
Course C	0							
		he students with the Finite Element Analysis fundamentals						
	o enable	the students to formulate the heat transfer and fluid flow p	roblems ir	to FEA.				
Syllabus								
		ndamentals of the three modes of heat transfer. Governing		1				
	1	f Finite Element method, Finite element equations and						
	-	volved in a thermal analysis, Effects of convection and ra	diation in	heat transfer,				
Compute	r progra	nming and implementation of FEM.						
Expected	Outco	nes						
-		this course, the students will be able to:						
		ematical model for solution of common engineering proble	ems.					
		nple problems into finite elements.						
		unsfer and fluid flow problems using professional-level fin	ite elemer	t software's				
Referenc	es							
1. R W I	Lewis, K	Morgan, H R Thomas and K Seetharamu: The Finite E	lement Me	ethod in Heat				
Transfer .	Analysis	-						
2. H C H	uang and	A Usmani: Finite Element Analysis for Heat Transfer						
		Applied Finite Element Analysis						
4. O C Ze	einkewic	z: The Finite Element Method 1997						
				Semester				
Module		Content	Hours	Exam				
				Marks (%)				
		of the fundamentals of the three modes of heat transfer						
Ι		ing differential equations. Initial and boundary conditions	h	15				
1		of the numerical techniques for the solution of matri	X	1.5				
	equation	ns						

П	Basic concepts of Finite Element method . Mesh generation- Types of elements, Node numbering scheme. Interpolation polynomials	8	15
	First Internal Examination		
ш	Finite element equations and element characteristic matrices . Variational approach, Galerkin approach. Assembly of element matrices. Solution of finite element system of equations.	8	15
IV	Steps involved in a thermal analysis . Analysis of linear and nonlinear conduction problems in steady and transient hea t transfer. 1D, 2D and 3D analysis with simple examples. Axisymmetric heat transfer. Finite element solution in the time domain	9	15
	Second Internal Examination		
V	Convection and Radiation heat transfer : Effects of convection in heat transfer- advection-diffusion. Analysis of heat transfer problems with radiation. Concepts of adaptive heat transfer analysis. Implementation of the adaptive procedure	10	20
VI	Computer programming and implementation of FEM . Introduction to general purpose FEM packages.	8	20
	Cluster Level End Semester Examination		

Course No.	Course Name	L-T-P: Credits	Year of Introduction		
10ME7323	ENERGY CONSERVATION & HEAT RECOVERY SYSTEMS	3-0-0: 3	2015		
Course Prerequi	isites				
Basic knowledg	ge of thermodynamic principles at UG Level.				
Course Objectiv	es				
To mak	e the awareness about the need of conserving energy an	minimizati	on of wastage		
of energ	^y				
To impa	art knowledge of various energy recovery, storage and tran	nsfer techni	ques		
To mak	e the students understand about various energy conversion	n systems	-		
Syllabus	<u> </u>				
v	nergy conservation, Energy consumption, Waste heat re-	ecovery sys	stems, heat to		
mechanical ene	rgy, energy management, Energy auditing,		·		
Expected Outco					
The students a	re expected to apply their knowledge to improve them	nal efficien	cy of various		
	systems and ability to select suitable application specific heat recovery systems.				
References					
1. Kenney W F	1. Kenney W F- Energy conservation in the Process industries				
2. Chiogioji M	H- Industrial energy conservation				

- 3. Bernhardt G A. Sjritsju&Vopat W A Power station engineering & economy
- 4. Thumann, Albert PE- Plant Engineers and Managers Guide Energy Conservation
- 5. Dubin F B-Energy conservation standards
- 6. A.P.E. Thummann: Fundamentals of Energy Engineering, Prentice Hall, 1984
- 7. M.H. Chiogioji: Industrial Energy Conservation, Marcel Dekker, 1979
- 8. W. R. Murphy and G. McKay: Energy Management, Butterworth-Heinemann, 2001

Module	Content	Hour s	Semester Exam Marks (%)
I	Potential for energy conservation Energy consumption and potential for energy conservation in industry-thermodynamics of energy conservation-energy flows- energy auditing-technologies for energy conservation-thermal insulation.	9	15
п	Waste Hear recovery systems Waste heat recovery systems, thermal energy storage, heat exchanger, heat pumps, heat pipes,	8	15
	First Internal Examination		
ш	Waste heat to mechanical energy conversion systems. Different sources of heat energy. Design for conversion of energy, simulation and modelling. Applications and case studies-	8	15
IV	Energy management Definition of energy management - Energy conservation schemes - Optimizing steam usage - Waste heat management - Insulation	6	15
	Second Internal Examination		
V	Energy auditing Energy auditing - Thermodynamic availability analysis – Thermodynamic efficiencies - Available energy and fuel.	7	20
VI	Thermodynamic analysis of common unit operations - Heat exchange - Expansion – Pressure let down - Mixing- Distillation - Combustion air pre-heating	7	20
	Cluster Level End Semester Examination		

Course No.	Course Name	L - T - P - Credits	Year of Introduction			
10ME7401	SEMINAR II	0 - 0 - 2	2015			
Course Prerequisites 1. The habit of reading technical magazines, conference proceedings, journals etc.						

- 2. Knowledge in technical writing and communication skills earned through seminar at UG level and in first semester
- 3. The course Seminar I in first semester

Course Objectives

- To enhance the reading ability required for identification of the thesis area and its literature review
- To develop skills regarding professional communication and technical report writing.
- To establish the fact that student is not a mere recipient of ideas, but a participant in discovery and inquiry.
- To arrive at a conclusion for doing Project Phase 1;
- To learn how to prepare and publish technical papers.

Guidelines

Students have to present a second seminar in 3rd semester. It is highly recommended that seminar-2 may report the literature survey being conducted as a requirement for doing the main project. Since the topic for the main project topic is to be finalized at the end of the second semester/ in the beginning of the 3rd semester, one can perform the literature search and present it as a seminar towards the middle of the semester. The Progress Evaluation Committee (PEC) formed in the second semester itself, may be the panel of evaluators for Seminar-2 also. The presentation of seminar-2 shall be of 20 minutes duration with another 5 minutes allocated for a discussion session. The committee shall evaluate the seminar based on the style of presentation, technical context, coverage of the topic, adequacy of references, depth of knowledge and the overall quality. Moreover, each student has to submit a seminar report in the prescribed format given by the Institution. It is recommended that the report for seminar-2 may be in the form of a technical paper which is suitable for publishing in Conferences / Journals as a review paper. This makes a student learn how to publish a paper and consequently develops a publishing culture among the PG student community. The references cited in the report shall be *authentic*.

Expected Outcomes

The students are expected to

- Be motivated in reading which equip them in identification of thesis area and its literature review;
- Develop the capacity to observe intelligently and propose and defend opinions and ideas with tact and conviction;
- Develop skills regarding professional communication and technical report writing;
- Arrive at a conclusion for doing Project Phase 1;
- Learn the methodology of publishing technical papers.

References

1.M. Ashraf Rizvi, *Effective Technical Communication*, Tata McGraw Hill, New Delhi, 2005 2.Day R A, *How to Write and Publish a Scientific Paper*, Cambridge University Press, 1989 3.Coley S M and Scheinberg C A, *Proposal Writing*, 1990, Newbury Sage Publications.

	Course plan				
Item	Description	Time			
1	Abstract Submission 3 Weeks	3 Weeks			
2	Allotment of Topic and Scheduling Seminars	1 Weeks			
3	Literature Review and Presentation Sessions	6 Weeks			

4	Report Submission	3 Weeks	
5	Publishing Grades	1 Weeks	

Course No.	Course Name	L - T - P - Credits	Year of Introduction
10ME7403	PROJECT (PHASEI)	0 - 0 - 12	2015

Course Prerequisites

- (1) The habit of reading technical magazines, conference proceedings and journals;
- (2) Interest solving in socially relevant or research problems
- (3) Skills in hardware/software implementation techniques earned from UG and mini project in semester 1
- (4) Course Mini project, Seminar II &b Research Methodology

Course Objectives

(1). The student is expected to finalise the thesis topic from the areas identified during seminar II. Background studies towards the project have to be done through literature survey in relevant fields.

(2). (S)he will work on the topic, familiarize with the design and analysis tools required for the

project work and plan the experimental platform, if any, required for project work.

(3) To develop the skill of identifying research problems/socially relevant projects

(4) To enhance the skills regarding the implementation aspects of small hardware/software projects.

Guidelines

Each student has to identify the topic project (phase I) related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 4th semester also. This project phase is conceptualized in such a way that, some the outcomes of the work may be continued for thesis work. Hence on completion of thisproject phase, (S)he will make a presentation based on the work and suggest future plan for his thesis work. The implementation of this phase of project can be software and/or hardware based one. This project phase is also envisaged as a way for implementing *problem based learning*. Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given high priority. In such interdisciplinary and inter institutional projects, a student can have co-guide(s) from other department/ institute/ research organizations/ industry. The university encourages *interdisciplinary projects* and *problem based learning strategy*.References cited shall be authentic.The following guidelines also have to be followed.

- 1. The student will submit a detailed project (phase I)report
- 2. The student will present at least two seminars
- 3. The first seminar will highlight the topic, objectives and methodology
- 4. A progress seminar can be conducted in the middle of the semester
- 5. The third seminar will be a presentation of the work they have completed till the end of third semester and the scope of the work which is to be accomplished in the fourth semester, mentioning the expected results

Expected Outcomes

The students are expected to :

- Develop the skill of identifying industrial/ research problems/socially relevant projects
- Develop skills regarding enumerating and selecting problems, subsequent analysis, and effective implementation of the solution.
- Hands on experience in design and analysis tools required for the project work
- Plan the experimental platform, if any, required for project work, which will be helpful in actual real life project planning
- To enhance the skills regarding the implementation aspects of hardware/software projects.
- Acquire documentation and problem solving skills.
- Develop professionalism.
- Communicate technical information by means of written and oral reports.

References

- 1. J.W. Bames, *Statistical Analysis for Engineers and Scientists*, McGraw Hill, New York.
- 2. Schank Fr., Theories of Engineering Experiments, Tata McGraw Hill Publication.
- 3. Douglas C Montgomery, *Design and analysis of experiments*, Wiley International
- 4. Leedy P D, *Practical Research : Planning and Design*, 4th Edition, N W MacMillan Publishing Co

	Course plan				
Item	Description	Time			
1	Abstract Submission	2 Week			
2	Allotment of Topic	1 Week			
3	Preliminary Presentation Sessions	1 Week			
4	Implementation Phase	9 Weeks			
5	Final Presentation-cum Demonstration	1 Week			

SEMESTER 1V

Course No.	Course Name	L - T - P - Credits	Year of Introduction		
10ME7404	PROJECT (PHASE II)	0 - 0 - 24	2015		
 (2) Interest (3) Skills in semester (4) Course (5) Course Course Object It is ex To wort To develop To imp Guidelines Each stude specified in Hence on and sugges problem beinstitute/ rinterdiscipied department interdiscipied authentic. The follow The stude 	it of reading technical magazines, conference proceedings and solving in socially relevant or research problems n hardware/software implementation techniques earned fi er 1 Seminar II&b Research Methodology PROJECT(Phase I)	rom UG and r used on Project nited time the of a facul ed by the institu- sentation base d as a way for problems ide ven high prid ave co-guide ne universit	ty member, as tute concerned. ed on the work r implementing entified by the ority. In such (s) from other y encourages		
 The first A program The thir till the eseminar of work 	t seminar will highlight the topic, objectives and methodology ess seminar can be conducted in the middle of the semester d seminar (pre submission seminar) will be a presentation of t nd of forth semester and scope for future work also has to be n has to be presented before the Evaluation Committee for asse . This would be the qualifying exercise for the students for get nent Committee for the submission of Thesis.	he work they h mentioned.The ssing the qualit	pre-Submission ty and quantum		
Expected Out	Expected Outcomes				
DevelopDevelopeffective	are expected to : p the skill of identifying industrial/research problems/soc p skills regarding enumerating and selecting problems re implementation of the solution. on experience in design and analysis tools required for th	s, subsequent	analysis, and		

- Plan the experimental platform, if any, required for project work, which will be helpful in actual real life project planning
- Enhance the skills regarding the implementation aspects of hardware/software projects.
- Acquire documentation and problem solving skills.
- Develop professionalism.
- Communicate technical information by means of written and oral reports.

References

1.J.W. Bames, Statistical Analysis for Engineers and Scientists, McGraw Hill, New York.

2. Schank Fr., Theories of Engineering Experiments, Tata McGraw Hill Publication.

3. Douglas C Montgomery, Design and analysis of experiments, Wiley International

4.Leedy P D, *Practical Research : Planning and Design*, 4th Edition, N W MacMillan Publishing Co

Course plan			
Item	Description	Time	
(1)	Implementation Phase	10 Weeks	
(2)	Thesis Preparation	3 Weeks	
(3)	Final Internal Presentation-cum Demonstration	1 Week	
(4)	Evaluation by the External expert	4 Weeks	

ASSESSMENT CRITERIA

A. Evaluation of Theory Courses

KTU follows a continuous academic evaluation procedure. This includes two internal examinations and one end semester cluster level University examination. Besides, students should be given proper assignments / course seminars which are essential aspects of a student-centric teaching approach. The continuous assessment procedure and corresponding weights for awarding 100 marks for a theory subject are as follows.

- 1. Two internal tests, each having 15 marks summing to a total of 30 marks
- 2. Tutorials / Assignments / Course Seminars summing to a total of 10 marks, and
- 3. Cluster level end-semester examination having 60 marks

B. Evaluation of Research Methodology

The course Research Methodology should be a common one for all specializations, which is envisaged to provide a research orientation for PG students. The teaching - learning process for this course should be a student-centric one in which the faculty-in-charge would take the role of a facilitator in the system. Students should be given proper guidelines for practicing the various methodologies which aims at the overall improvement of their skills required for pursuing research. The continuous assessment procedure and corresponding weights for awarding 100 marks (fully internal) for Research Methodology are as follows.

- 1. Three internal tests, each having 20 marks summing to a total of 60 marks
- 2. Tutorials / Assignments / Course Seminars summing to a total of 40 marks

C. Evaluation of Practical Courses

The continuous assessment procedure and corresponding weights for awarding 100 marks for a practical subject are as follows.

- 1. Practical Records / Results summing to a total of 40 Marks
- 2. Regular Class Viva-Voce summing to a total of 20 Marks
- 3. Final Test (Internal & Objective Type) having 40 Marks

D. Guidelines for Seminar-1

Students have to select a topic and present a seminar in first semester on any current topic related to the branch of specialization under the guidance of a faculty member. It is recommended that the same faculty member may serve as his/her supervisor for the mini-project in 2^{nd} semester and also for the main project during 3^{rd} & 4^{th} semesters. Hence it is also recommended that a topic, possibly relevant to his mini-cum-main project may be selected as the topic for seminar-1, after the consultation with the guide. The student will undertake a detailed study of the subject based on current published papers, journals, and books and present it before a committee with the Head of the Department as the chairman and two faculty members (Faculty advisor + Guide) from the department as members. The presentation shall be of 20 minutes duration with another 5 minutes allocated for a discussion session. The committee shall evaluate the seminar based on the style of presentation, technical context, coverage of the topic, adequacy of references, depth of

knowledge and the overall quality. Moreover, each student has to submit a seminar report in the prescribed format given by the Institution.

The weights for awarding 100 marks (totally internal) for the seminar-1 is as follows.

- 1. Presentation (Verbal & Nonverbal Communication skills) : 20 Marks
- 2. Breadth of the topic (Coverage : Content of the slides and speech) : 20 Marks
- 3. Depth of knowledge (Ability to answer questions) : 30 Marks
- 4. Seminar Report in the prescribed format given by the Institution : 30 marks

E. Guidelines for the Mini Project

Each student has to do a mini project related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing *problem based learning*. Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given high priority. In such interdisciplinary and inter institutional projects, a student can have co-guide(s) from other department/ institute/ research organizations/ industry. The university encourages *interdisciplinary projects* and *problem based learning* strategy.

There should be a Progress Evaluation Committee (PEC) for each student which is constituted by three faculty members : (1) HoD as chairman, (2) Faculty advisor, and (3) Guide. This committee should evaluate the mini project through 2 presentations - (i) a preliminary presentation which is to be held soon after finalizing the topic, and (ii) a final presentation towards the end of the semester. In between, the Guide and /or the Co-guide is entrusted for the continuous evaluation of the work progress.

The weights for awarding 100 marks (totally internal) is as follows.

- (1) Preliminary Presentation (PEC) : 20 Marks
- (2) Progress Evaluation (Guide and/or Co-guide) : 30 Marks
- (3) Final Presentation-cum-demonstration (PEC): 30 Marks
- (4) Report (Mandatory) : 20 Marks

F. Guidelines for Seminar-2

Students have to present a second seminar in 3rd semester. It is highly recommended that seminar-2 may report the *literature survey* being conducted as a requirement for doing the main project. Since the topic for the main project topic is to be finalized in the beginning of the 3rd semester, one can perform the literature search and present it as a seminar towards the middle of the semester. The Progress evaluation Committee (PEC) formed in the second semester itself, will be the panel of evaluators for Seminar-2 also. The presentation of seminar-2 shall be of 20 minutes duration with another 5 minutes allocated for a discussion session. The committee shall evaluate the seminar based on the style of presentation, technical context, coverage of the topic, adequacy of references, depth of knowledge and the overall quality. Moreover, each student has to submit a seminar report in the prescribed format given by the Institution. It is recommended

that the report for seminar-2 may be in the form of a technical paper which is suitable for publishing in Conferences / Journals as a review paper. This makes a student learn how to publish a paper and consequently develops a publishing culture among the PG student community.

The weights for awarding 100 marks (totally internal) for the seminar-2 is as follows.

- 1. Presentation (Verbal & Nonverbal Communication skills) : 20 Marks
- 2. Breadth of the literature review (Coverage : Content of the slides and speech) : 20 Marks
- 3. Depth of knowledge (Ability to answer questions) : 30 Marks
- 4. Seminar Report / Paper in the prescribed format given by the Institution : 30 marks

G. Guidelines for the Project Work

Project work is to be carried out in the 3^{rd} and 4^{th} semesters and also to be evaluated in both semesters. It is recommended that students should execute the project work using the facilities of the institute itself. However, external projects can be taken up in the 4^{th} semester, if that work solves a technical problem of the external firm. Prior sanction should be obtained from the Head of Institution before taking up external project work. Project evaluation committee should study the feasibility of each project work before giving consent. The project work is also to be evaluated continuously, during $3^{rd} \& 4^{th}$ semesters through presentation sessions. Based on these evaluations the grade is finalized in the fourth semester. The internal committee (PEC) and an External Expert shall evaluate the project based on *four* presentations by the student during these semesters. The *first* presentation in 3^{rd} semester should be held in the beginning of the semester which would highlight the topic, objectives, and the methodology. The *second* presentation in the same semester should bring out the work progress through the preliminary results and is to be conducted towards the end of the semester. These are evaluated totally internally by the PEC.

The Project Phase - II will be an extension of the Project Phase - I. A student has to prepare a project report, namely the thesis, towards the end of the 4^{th} semester. Both the presentation and the thesis will be evaluated by the Committee and the External expert. The *third* presentation on project is to be made towards the end of 4^{th} semester as a final internal presentation. At least one technical paper is to be published in Journals / Conferences so as to meet the requirements for final external submission. The *fourth* presentation is a *repetition* of the third one, but before an *External Expert*, appointed through the process of submitting the M. Tech. Thesis to the University (Cluster). The external expert will assess the quality and quantity of the work done by the student in the final (fourth) presentation. The comments of the examiners during this presentation should be incorporated in the work and report and is to be submitted as hard bound copies before the program exit by the student.

The weights for awarding 150 marks for Project shall be as follows.

- A. 3rd Semester Marks : 50 for Project Progress Evaluation
 - 1. Preliminary Presentation, evaluated by PEC : 15 Marks
 - 2. Progress evaluation by the Project Supervisor/s : 20 Marks
 - 3. End-semester presentation, evaluated by PEC : 15 Marks

B. 4th Semester - Marks : 100 for Final Evaluation

- 1. Project evaluation by the supervisor/s : 30 Marks
- 2. Final internal evaluation by PEC : 40 Marks
- 3. Evaluation of the thesis presentation by an External Expert : 30 Marks