BRANCH: *Electrical & Electronics Engineering*

SEMESTER - 8

Course Name	TT	L-T-P	Credits	Exam Slot
Special Electric Machines	21	3-0-0	3	A
Industrial Instrumentation &Automation		3-0-0	3	AB
Elective 4	EF	3-0-0	3	С
Elective 5 (Non Departmental)		3-0-0	3	D
Project			6	S
	Special Electric Machines Industrial Instrumentation &Automation Elective 4 Elective 5 (Non Departmental)	Special Electric Machines Industrial Instrumentation &Automation Elective 4 Elective 5 (Non Departmental) Project	Special Electric Machines3-0-0Industrial Instrumentation &Automation3-0-0Elective 43-0-0Elective 5 (Non Departmental)3-0-0Project	Special Electric Machines3-0-03Industrial Instrumentation &Automation3-0-03Elective 43-0-03Elective 5 (Non Departmental)3-0-03Project6

Elective 4:-

1. EE462	Design of Digital Control Systems

- 2. EE464 FACTS
- 3. EE466 Digital Image Processing
- 4. EE468 Computer Networks
- 5. EE472 Internet of Things
- 6. EE474 Energy Management and Auditing

2014

Course c	ode Course Name	L-T-P - Credits	Yean	
EE40 2	2 Special Electrical Machines	3-0-0-3	201	
Prerequi	1		_01	
-	Dijectives			
	• To get an overview of some of the sp	pecial machines for	control and	industrial
	applications	L		
Syllabus	A DI A DIDI II	TZATA	<u> </u>	
	vomotors – construction – operation - DC s			
	des of excitation – AC series motor – Unive			
	Switched reluctance motor – Permanent m otors – Linear induction motors.	agnet DC motor – F	srushiess D	_ motor –
Expected		CITY	h her	
p+++++++++++++++++++++++++++++++++	• The students will gain knowledge in the cor	struction and principle	of operation of	of certain
	special electrical machines having various ap			
Text Boo	· · · ·			
	. <mark>Jan</mark> ardhanan, ' <i>Special Electrical Machi<mark>ne</mark>s</i> ' PHI	Learning Private Limit	ed.	
Referenc				
	ving L. Kosow.' Electrical Machinery and Transfe			
	J. E. Miller, 'Brushless PM and Reluctance Moto			
	heodore Wildi, ' <i>Electric Machines, Drives and Po</i>	•		
4. Ve	einott & Martin,' <i>Fractional & Subfractional hp E</i> Course P		w пш шета	uonai eun.
				Sem.
Module	Contents		Hours	Exam Marks
	AC Servomotors- Construction-princip	le of operation	-	
	performance characteristics – damped AC	² servomotors – Dra	g	
Ι	cup servomotor – applications.		7	15%
1	DC servomotors – field and armature contr	colled DC servomotor	:s	15%
	- permanent magnet armature controlled -	- series split field De	C	
	servomotor.			
	Stepper motors – Basic principle – different	• 1		
	reluctance- permanent magnet – hybrid ty			
II	theory of operation – monofilar and bifilar	U U		15%
	excitation – drive circuits – static and dyna	amic characteristics –		
	applications			
	FIRST INTERNAL EX			
	Single phase special electrical machines			
	construction – principle of working – phase	or diagram – universa		1.50/
III	motor	••••	7	15%
	Hysteresis motor- constructional details- pr	rinciple of operation	-	
	torque-slip characteristics – applications.			
	Reluctance motors – principle of operation			
	torque slip characteristics-applications.	NULLCHAR reluctone	e	1
IV				15%
IV	motors – principle of operation – power torque equation – different types – comparis	r converter circuits		15%

type-sinusoidal type – comparison – applications. Linear motors – different types – linear reluctance motor – linear synchronous motors – construction – comparison		SECOND INTERNAL EXAMINATION		
VI linear synchronous motors – construction – comparison. 7	V	working. Brushless dc motor - construction - trapezoidal	7	20%
equivalent circuit – applications.	VI	linear synchronous motors – construction – comparison. Linear induction motors – Expression for linear force –	7	20%

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course		L-T-P -		ar of
code		Credits		duction
EE404		3-0-0-3	2	016
Dronoquio	AUTOMATION			
Prerequis Course O			-	
Course	• To impart knowledge about Industrial instrumentation and	automat	ion	
Syllabus:	• To impart knowledge about industrial instrumentation and	automat		
v	characteristic of instrumentation- Transducers: Characteristics	s Appli	cations	– Nano
	tation - signal conditioning, MEMS, Virtual instrumentation			
	- sequence control, PLC			<i>J</i> ~~~~
	Outcome:			
-	completion of the course, the students will be able to:			
i.	Select instruments and transducers for various physical variable	les.		
ii.	Get an insight on data acquisition, processing and monitoring s	system		
iii.	Design various signal conditioning systems for transducers.			
iv.	Analyze dynamic responses of various systems.			
v.	Get the concepts of virtual instrumentation			
vi.	Understand the programming realization of PLC			
Text book				
	rtis D Johnson," Process Control Instrumentation Technology"			
	eblin E.O, 'Measurement Systems: Application and Design, F	ourth E	11tion,	McGraw
	II, Newyork, 1992		omina	Deve I tal
	/S. Murty, 'Transducers and Instrumentation' Second Edition w Delhi ,2013	, PHI LO	earning	PVI LIU
	adhuchhanda Mitra, Samarjit Sengupta, 'Programmable Logic C	ontroller	's and I	ndustrial
	tomation An Introduction', Penram International Publishing (In			
	ckell. P. Groover 'Automation, Production and computer int			
	entice Hall of India, 1992			
	tranabis, D., 'Principles of Industrial Instrumentation', Second	d Edition	Tata	McGraw
Hi	ll Publishing Co. Ltd New Delhi			
7. Ro	ll Publishing Co. Ltd New Delhi bert B. Northrop, 'Introduction to instrumentation and measurer	nents', C	CRC, Ta	ylor and
Fra	ancis 2005	1		
Reference				
	K.McMillan, 'Process/Industrial Instrument and control and ha	nd book	' McGı	aw Hill,
	w York,1999		~	
	chael P .Lucas, 'Distributed Control system', Van Nastrant R	einhold	Compa	ny, New
Yo				
	Course Plan			
Module	Contents	E	lours	Sem. Exam Marks
Ι	Introduction to Process Control - block diagram of process con loop, definition of elements. Sensor time response - first second order responses.	and	6	15%
	Review of Transducers: Characteristics and Choice of transdu	icer-		

	factors influencing choice of transducer		
	Applications of Transducers		
	Displace measurement: Resistance potentiometer, Capacitive and		
	Inductive. Capacitive differential pressure measurement		
	Torsional, shearing stress and rotating shaft Torque measurement		
II	using strain gauge. Flow measurement :Hotwire anemometer,	8	15%
	constant resistance Constant current type Eddy current sensors,	A	
	Variable reluctance tachometers	V.L	
	Phase measurement : Analog and digital phase detectors	T .	
	Nano Instrumentation	1.5	
	FIRST INTERNAL EXAMINATION		·
	Signal conditioning circuits-Instrumentation amplifiers-		
	Unbalanced bridge. Bridge linearization using op amp		
III	Precision rectifiers, Log amplifiers, Charge amplifiers, Isolation	7	15%
	amplifier, Switched capacitor circuits, Phase sensitive detectors,		
	Noise problem in instrumentation and its minimisation		
	Micro Electromechanical system (MEMS)		
	Advantages and Applications, MEMS micro sensors and actuators,		
	Manufacturing process: Bulk micro machining and surface		
IV	micromachining, MEMS accelerometers	7	15%
	Virtual instrumentation system: architecture of virtual instruments		
	– Virtual instruments and traditional instruments – concepts of		
	graphical programming		
	SECOND INTERNAL EXAMINATION		
	Overview of Automation System - Architecture of Industrial		
	Automation Systems, Different devices used in Automation		
V	Actuators, definition, types, selection.	7	20%
	Pneumatic, Hydraulic, Electrical, Electro-Pneumatic and valves,		
	shape memory alloys		
	Introduction to Sequence Control, PLCs - Working, Specifications		
	of PLC Onboard/Inline/Remote IO's, Comparison of PLC & PC,		
VI	Relay Ladder Logic- PLC Programming- realization of AND, OR	7	20%
• •	logic, concept of latching, Introduction to Timer/Counters,	'	2070
	Exercises based on Timers, Counters. Basic concepts of SCADA,		
	DCS and CNC		
	END SEMESTER EXAM		

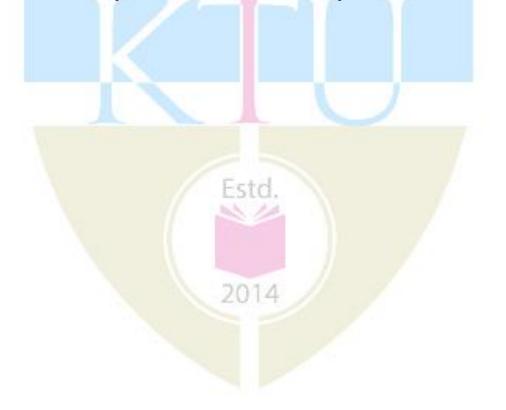
1-1

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.


One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course Co	ode	Course Name	L-T-P-Credits	Year Introdu	
CE488	}	DISASTER MANAGEMENT	3-0-0-3	201	6
-	provi	ves de an overview of the common hazards a cate the basic concepts of disaster manage	5	s	
Syllabus		API ABDUI	KALA	M	
component hazard, vu Disasters - of Impacts	sub ilnera Earth 5 - A ic pol	ncepts of hazards and disasters - Basi systems Climate Change - Introduct ability, exposure, risk, crisis, emergen a quakes, Landslides. Floods, Coastal di nthropogenic Disasters – Soil degrad lution -Hazard and disaster managemen	ion to key concep cies, Disasters, F sasters, Tidal wav dation and deser	ts and termin Resilience - ves, Tsunamin tification -w	nology of Natural s. Nature
The studen					
		al ideas about the processes involved in	natural and anthr	opogenic disa	asters
Ū.	0	nd the concepts of disaster management		1 0	
		episodes of disasters		0	
2. Ariy Hal 3. Bell SPC 4. Bose Lon 5. Dav 6. Mat 2002 7. Nice Dev 8. Uni	drew, s, 200 yabar 1 (Ind , F.G. DN Ro sler,] adon, 7id A tthew 2 k Ca 7elop ted 1	ndu, M. and Sahni P. (Eds), "Disaster Risl ia), 2003. , "Geological Hazards: Their assessment putledge, London. 1999 . <mark>D., "Manual of Geospatial Science and T</mark>	k Reduction in Sou , avoidance and m Fechnology", Tayle Press, New Delhi, ental Change", Bill Disaster Manager , Phenomena, Ef ek, 1991	uth Asia", Pro ittigation", E or and Franci 1993 McGuire, Ia 's Handbook	entice- & FN is, n Mason, «". Asian
			/		End
Module		Contents		Hours	Sem. Exam Marks
Ι	key expo Basic syste	lamental concepts of hazards and disast concepts and terminology of haz sure, risk, crisis, emergencies, Disasters, c concept of Earth as a system and ms. Climate Change vis-a-vis the inter systems- Green House Effect and Glob	ard, vulnerabilit Resilience. its component su relationships of th	y, 7 Ib ne	15%

	ideas about their causes and effects.		
Π	Types of Natural Disasters I- Earth quakes, Landslides. Nature of impacts.	7	15%
	FIRST INTERNAL EXAMINATION		
III	Types of Natural Disasters II- Floods, Coastal disasters- Cyclones, Tsunamis. Nature of impacts.	7	15%
IV	Types of Anthropogenic Disasters I- soil and soil degradation, desertification.	7	15%
	SECOND INTERNAL EXAMINATION		
V	Types of Anthropogenic Disasters II-Fundamental concepts of water and atmospheric pollution.	7	20%
VI	Hazard and disaster management plans for floods, tidal waves.	7	20%
	END SEMESTER EXAMINATION		•

QUESTION PAPER PATTERN (End Semester Examination)

2014

Maximum Marks :100

Exam Duration: 3 Hrs

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V &VI: 2 questions out of 3 questions carrying 20 marks each
- **Note** : 1.Each part should have at least one question from each module 2.Each question can have a maximum of 4 subdivisions (a,b,c,d)

Course co	ode Course Name L-T-P Credits		Year Introdu	
EE474			201	6
Prerequis	ite : Nil			
ma	bjectives enable the students to understand the concept of energy managemen nagement opportunities understand the different methods used to control peak demand	t and	energy	
	know energy auditing procedure understand the different methods used for the economic analysis of	energy	y projec	ets.
controls -	rinciples of Energy management and Energy management planni Energy management opportunities in electrical systems and HVAC magement – Energy audit – cogeneration system – Economic analysis	syste	ms – R	eactive
• The	l outcome . e students will be able to understand the different methods used to re sumption	duce	energy	
Data Boo	ok (Approved for use in the exam <mark>in</mark> ation):			
 2. Ch. 3. Cra 4. D. Pre 5. G.O. 200 6. IEH fac 7. IEH 8. M. Bo 9. Pat 	EE recommended practice for energy management in industrial and c ilities, EE std 739 - 1995 (Bronze book). Jayaraju and Premlet, Introduction to Energy Conservation And Ma oks, 2008 Il O'Callaghan, Energy management, McGraw Hill Book Co. yne C. Turner, Energy management Hand Book The Fairmount I	Sons, n Han 7 Hill, comm nagen	1996. Idbook, Pub. C ercial nent, Pl	CRC
	Course Plan			Sem.
Module	Contents		Hours	Exam Marks
I	General principles of Energy management and Energy managem planning. Peak Demand controls, Methodologies, Types of Industrial Lo Optimal Load scheduling-Case studies.		6	15%
II	Energy management opportunities in Lighting and Motors. Electrol Process and Electric heating, Case studies.	ytic	8	15%
	FIRST INTERNAL EXAMINATION			
ш	Types of boilers, Combustion in boilers, Performances evaluat Feed water treatment, Blow down, Energy conservation opportunit in boiler.			

	Properties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Classification, General fuel economy measures in furnaces, Excess air, Heat Distribution, Temperature control, Draft control, Waste heat recovery.	8	15%
IV	 HVAC system: Coefficient of performance, Capacity, Factors affecting Refrigeration and Air conditioning system performance and savings opportunities. Classification and Advantages of Waste Heat Recovery system, analysis of waste heat recovery for Energy saving opportunities 	7	15%
	SECOND INTERNAL EXAMINATION		I
V	Energy audit -Definition, Need, Types of energy audit, Energy audit Instruments.Cogeneration-Types and Schemes, Optimal operation of cogeneration plants- Case study.Computer aided energy management.	7	20%
VI	Economic analysis methods-cash flow model, time value of money, evaluation of proposals, pay-back method, average rate of return method, internal rate of return method, present value method, life cycle costing approach, Case studies.	6	20%
	END SEM <mark>E</mark> STER EXAM	-	

QUESTION PAPER PATTERN:

Estd.

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

	Course N	lame	Credits	Year of Introduction
**492	PROJE	СТ	6	2016
1		erequisite : Nil		
Course Object		1		
-	y engineering knowledge in	practical problem	solving	
	er innovation in design of pr		•	
• To deve	elop creative thinking in find	ling viable solution	s to engineering pr	oblems
Course Plan	API ARD	8	8 81	
	of the topic assigned in the	light of the prelim	inary report prepa	red in the sevent
Review and fin	alization of the approach to	the problem relatin	g to the assigned to	opic
	ailed action plan for conduc			
	sis/Modelling/Simulation/D	•	0 1	
	ent of product/process, testi			
	per for Conference presentat			
	ort in the standard format fo			
	resentation and viva voce by	y the assessment bo	ard including exter	rnal expert
Expected out				
The students w		1	. 1 .	
The students wi	Think innovatively on the dev		nents, products, proc	esses or
iii.	Think innovatively on the dev technologies in the engineerin	ng field		esses or
	Think innovatively on the dev	ng field		esses or
iii.	Think innovatively on the dev technologies in the engineerin	ng field		esses or
iii. iv.	Think innovatively on the dev technologies in the engineerin Apply knowledge gained in s	ng field		esses or
iii. iv. Evaluation Maximum M	Think innovatively on the dev technologies in the engineerin Apply knowledge gained in s arks : 100	ng field olving real life engin		esses or
iii. iv. Evaluation Maximum M (i) Two progre	Think innovatively on the dev technologies in the engineerin Apply knowledge gained in s arks : 100 ess assessments	ng field olving real life engin 20% by the fac	eering problems	esses or
iii. iv. Evaluation Maximum M (i) Two progre (ii) Final proje	Think innovatively on the dev technologies in the engineerin Apply knowledge gained in s arks : 100 ess assessments	ng field olving real life engin	eering problems ulty supervisor(s) essment board	esses or
iii. iv. Evaluation Maximum M (i) Two progre (ii) Final proje	Think innovatively on the dev technologies in the engineerin Apply knowledge gained in s arks : 100 ess assessments ect report	ng field olving real life engin 20% by the fac 30% by the ass	eering problems ulty supervisor(s) essment board	esses or
iii. iv. Evaluation Maximum M (i) Two progra (ii) Final project (iii) Project pr	Think innovatively on the dev technologies in the engineerin Apply knowledge gained in s arks : 100 ess assessments ect report	ng field olving real life engin 20% by the fac 30% by the ass 50% by the ass	eering problems ulty supervisor(s) essment board essment board	
iii. iv. Evaluation Maximum M (i) Two progra (ii) Final project (iii) Project pr	Think innovatively on the dev technologies in the engineerin Apply knowledge gained in s arks : 100 ess assessments ect report resentation and viva voce	ng field olving real life engin 20% by the fac 30% by the ass 50% by the ass	eering problems ulty supervisor(s) essment board essment board	
iii. iv. Evaluation Maximum M (i) Two progre (ii) Final project (iii) Project pr <i>Note:</i> All the t	Think innovatively on the dev technologies in the engineerin Apply knowledge gained in s arks : 100 ess assessments ect report resentation and viva voce	ng field olving real life engin 20% by the fac 30% by the ass 50% by the ass	eering problems ulty supervisor(s) essment board essment board	
iii. iv. Evaluation Maximum M (i) Two progre (ii) Final project (iii) Project pr <i>Note:</i> All the t	Think innovatively on the dev technologies in the engineerin Apply knowledge gained in s arks : 100 ess assessments ect report resentation and viva voce	ng field olving real life engin 20% by the fac 30% by the ass 50% by the ass	eering problems ulty supervisor(s) essment board essment board	
iii. iv. Evaluation Maximum M (i) Two progre (ii) Final project (iii) Project pr <i>Note:</i> All the t	Think innovatively on the dev technologies in the engineerin Apply knowledge gained in s arks : 100 ess assessments ect report resentation and viva voce	ng field olving real life engin 20% by the fac 30% by the ass 50% by the ass	eering problems ulty supervisor(s) essment board essment board	
iii. iv. Evaluation Maximum M (i) Two progre (ii) Final project (iii) Project pr <i>Note:</i> All the t	Think innovatively on the dev technologies in the engineerin Apply knowledge gained in s arks : 100 ess assessments ect report resentation and viva voce	ng field olving real life engin 20% by the fac 30% by the ass 50% by the ass	eering problems ulty supervisor(s) essment board essment board	
iii. iv. Evaluation Maximum M (i) Two progre (ii) Final project (iii) Project pr <i>Note:</i> All the t	Think innovatively on the dev technologies in the engineerin Apply knowledge gained in s arks : 100 ess assessments ect report resentation and viva voce three evaluations are mandat	ng field olving real life engin 20% by the fac 30% by the ass 50% by the ass tory for course com	eering problems ulty supervisor(s) essment board essment board	
iii. iv. Evaluation Maximum M (i) Two progre (ii) Final project (iii) Project pr <i>Note:</i> All the t	Think innovatively on the dev technologies in the engineerin Apply knowledge gained in s arks : 100 ess assessments ect report resentation and viva voce three evaluations are mandat	ng field olving real life engin 20% by the fac 30% by the ass 50% by the ass	eering problems ulty supervisor(s) essment board essment board	
iii. iv. Evaluation Maximum M (i) Two progre (ii) Final project (iii) Project pr <i>Note:</i> All the t	Think innovatively on the dev technologies in the engineerin Apply knowledge gained in s arks : 100 ess assessments ect report resentation and viva voce three evaluations are mandat	ng field olving real life engin 20% by the fac 30% by the ass 50% by the ass tory for course com	eering problems ulty supervisor(s) essment board essment board	
iii. iv. Evaluation Maximum M (i) Two progre (ii) Final project (iii) Project pr <i>Note:</i> All the t	Think innovatively on the dev technologies in the engineerin Apply knowledge gained in s arks : 100 ess assessments ect report resentation and viva voce three evaluations are mandat	ng field olving real life engin 20% by the fac 30% by the ass 50% by the ass tory for course com	eering problems ulty supervisor(s) essment board essment board	