

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	AET302	DIGITAL SIGNAL PROCESSING	3-1-0	4	4
В	AET304	PROCESS DYNAMICS AND CONTROL	3-1-0	4	4
С	AET306	POWER ELECTRONICS	3-1-0	4	4
D	AETXXX	PROGRAM ELECTIVE I	2-1-0	3	3
E 1/2	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	AET308	COMREHENSIVE COURSE WORK	1-0-0	1	1
S	AEL332	POWER ELECTRONICS LAB	0-0-3	3	2
Т	AED334	MINIPROJECT	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR <mark>/H</mark> ONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	23/27
ROGRAN	I ELECTIVE I				

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
	ECT312	DIGITAL SYSTEM DESIGN	2-1-0		
	AET322	DIGITAL IMAGE PROCESSING	2-1-0		
	AET332	COMPUTER NETWORKS	2-1-0	3	3
D	AET342	BIOMEDICAL INSTRUMENTATION	2-1-0		
	AET352	REAL TIME OPERATING SYSTEMS	2-1-0		
	AET362	OPTOELECTRONIC DEVICES	2-1-0	1	
	AET372	INTERNET OF THINGS	2-1-0]	
			1		

A ET307	DICITAL SICNAL BROCESSINC	CATEGORY	L	Τ	Р	CREDITS
AE 1302	DIGITAL SIGNAL PROCESSING	PCC	3	1	0	4

Preamble: This course aims to develop skills to realize and implement systems that process discrete time signals.

Prerequisite: ECT204 Signals and Systems

Course Outcomes: After the completion of the course the student will be able to

CO 1	Outline the fundamental properties relevant to DFT and explain the use of computationally efficient algorithms for finding DFT and IDFT				
CO 2	Develop filter response for linear phase FIR digital filters for given specifications				
CO 3	Develop filter transfer function for IIR digital filters for given specifications using design concepts of analog filter and analog-to-digital transformations.				
CO 4	Implement FIR and IIR filter structures for a given system function.				
CO 5	Explain architectural features of general purpose DSP processors and finite word length effects in DSP systems and filters				

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO
			1							10	11	12
CO 1	3				3							3
CO 2	3	3	3		3							3
CO 3	3	3	3		3							3
CO 4	3	3	3		3							3
CO 5	3											3

Assessment Pattern

Bloom's Category		Continuous A Tests	ssessment	End Semester Examination
		1	2	
Remember	K1	10	10	10
Understand	K2	30	30	60
Apply	K3	10	10	30
Analyse				
Evaluate				
Create				

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Outline the fundamental properties relevant to DFT and explain the use of computationally efficient algorithms for finding DFT and IDFT.

- 1. Find the DFT of the given sequence using direct equation.
- 2. Show that the given property is satisfied by DFT
- 3. Calculate linear / circular convolutions of given sequence.
- 4. Explain the relation of DFT to DTFT and z-transforms.
- 5. Explain the spectrum analysis of discrete signals
- 6. Draw the butterfly diagram to compute the DFT/ IDFT using DIT/DIF FFT algorithm and find the computational advantage of using FFT algorithm.

Course Outcome 2 (CO2): Develop filter response for linear phase FIR digital filters for given specifications.

- 1. Prove the linear phase response of type 1 linear FIR filter
- 2. Find the filter coefficients for a linear phase FIR filter for given order/specifications using given/appropriate window.
- 3. Find the filter coefficients for a linear phase FIR filter for specifications using frequency sampling method.

Course Outcome 3 (CO3): Develop filter transfer function for IIR digital filters for given specifications using design concepts of analog filter and analog-to-digital transformations.

- 1. Find the H(z) of the given analog transfer function H(s) using Impulse Invariant/Bilinear Transformation method.
- 2. Design a Butterworth filter to implement an IIR filter H(z) for given specifications using Impulse Invariant/Bilinear Transformation method .

3. Find the filter transfer functions for high pass, band pass and band reject filters from the given low pass filter transfer function H(s) or H(z).

Course Outcome 4 (CO4): Implement FIR and IIR filter structures for a given system function.

- 1. Draw the direct form realization of given FIR filter.
- 2. Develop the direct form realization of given symmetric FIR filter using minimum multipliers.
- 3. Develop the realization of given IIR filter transfer function H(z) in Direct Form I, Direct Form II, Transposed form, Cascade form, Parallel form.

Course Outcome 5 (CO5): Explain architectural features of general purpose DSP processors and finite word length effects in DSP systems and filters.

- 1. Explain the representation of numbers in digital systems/digital processors in fixed point and floating point representations.
- 2. Explain the input/coefficient/product quantization effects in digital filters.
- 3. Explain the input/coefficient/product quantization effects FFT algorithms .
- 4. Compare the different architectures used in digital signal processors
- 5. Explain the architecture of TMS320C67xx digital signal processor.

SYLLABUS

Module 1:

Discrete Fourier Transform: DFT of signals, Relationship of the DFT to other transforms, IDFT, Properties of DFT and examples, Circular convolution, linear convolution using circular convolution.

Spectral Analysis of signals: Frequency Analysis of Signals using the DFT, Spectrum leakage and frequency resolution.

Fast Fourier Transform: Algorithmic development and computational advantages of Radix-2 Decimation in Time and Decimation in Frequency FFT Algorithms for DFT and IDFT computation.

Module 2:

Linear phase FIR filters: Frequency response characteristics of ideal filter and physically realizable filters, Symmetric and Antisymmetric FIR Filters.

Design of FIR Filters: Design of linear phase FIR Filters using Window method and Frequency Sampling method, Introduction to Optimal FIR Filters.

Module 3:

Design of analog prototype filters: Design of IIR Digital Filters from Analog Filters, Butterworth filter design to meet required filter specifications, Overview and comparison of other analog filters.

Design of IIR Filter from Analog filters: IIR Filter Design by Impulse Invariance and Bilinear Transformation methods. Comparison with FIR filter.

Frequency Transformations: Frequency Transformations in the Analog and Digital Domain

Module 4 :

Digital Filter structures: Block diagram and signal flow graph representations of filters **FIR Filter Structures**: Direct Form, Cascade Form, Lattice Structures

IIR Filter Structures: Direct Form I, Direct Form II, Transposed Form, Cascade Form and Parallel Form structures

Module 5:

Finite word length effects in DSP systems: Fixed point and floating-point representation of numbers, Errors resulting from rounding and truncating, Quantization effects of digital filters and FFT algorithms (analysis not required).

Computer architecture for digital signal processing: Concepts of Von Neumann and Harvard architectures, Pipelining. Introduction to TMS320C67xx digital signal processor.

Text Books

- 1. Proakis J. G. and Manolakis D. G., Digital Signal Processing, 4/e, Pearson Education, 2007.
- 2. Oppenheim A. V., Schafer R. W. and Buck J. R., Discrete Time Signal Processing, 3/e, Prentice Hall, 2007.

Reference Books

- 1. Ifeachor, E.C., & Jervis, B.W., "*Digital Signal Processing: A Practical Approach*", 2/e, Pearson Education Asia, 2002.
- 2. Chassaing, Rulph., DSP applications using C and the TMS320C6x DSK. Vol. 13. John Wiley & Sons, 2003.
- 3. Mitra, S.K., "Digital Signal Processing: A Computer-Based Approach", McGraw Hill, NY, 1998
- 4. Salivahanan, Digital Signal Processing,3e, Mc Graw –Hill Education New Delhi, 2014
- 5. Chassaing, Rulph., DSP applications using C and the TMS320C6x DSK. Vol. 13. John Wiley & Sons, 2003.

Course Contents and Lecture Schedule

Na	Estid,	No. of Locturos
INO	Горіс	Lectures
1	Discrete Fourier Transform	
1.1	DFT of signals, Relationship of the DFT to other transforms, IDFT.	2
1.2	Circular convolution, linear convolution using circular convolution.	1
1.3	Properties of DFT and examples.	2
	Spectral Analysis of signals	
1.4	Frequency Analysis of Signals using the DFT, Spectrum leakage and	1
	frequency resolution.	
	Fast Fourier Transform	
1.5	Algorithmic development and computational advantages of Radix-2	2
	Decimation in Time and Decimation in Frequency FFT Algorithms.	
1.6	DFT and IDFT computation using FFT.	2
2	Linear phase FIR filters	
2.1	Frequency response characteristics of ideal filter and physically	2
	realizable filters -low pass, high pass, band pass and band reject	

2.2	Symmetric and Antisymmetric FIR Filters, Frequency response of symmetric and antisymmetric filters	1
	Design of FIR Filters	
2.3	Design of linear phase FIR Filters using Window method	2
2.4	Comparison of filter response using different windows	1
2.5	Design of linear phase FIR Filters using frequency sampling Method	2
2.6	Introduction to Optimal FIR Filters	1
3	Design of analog prototype filters	
3.1	Design of IIR Digital Filters from Analog Filters	1
3.2	Butterworth filter design to meet required filter specifications	2
3.3	Overview and comparison of other analog filters.	1
	Design of IIR Filter from Analog filters	
3.4	IIR Filter Design by Impulse Invariance method.	2
3.5	IIR Filter Design by Bilinear Transformation method.	2
3.6	Comparison with FIR filter	1
	Frequency Transformations	
3.7	Frequency Transformations in the Analog and Digital Domain	1
4	Digital Filter structures	
4.1	Block diagram and signal flow graph representations of filters	1
	FIR Filter Structures	
4.2	Direct Form structure, Direct form of linear phase filter with minimum multipliers, Cascade Form Structures, Lattice structure.	3
	IIR Filter Structures	
4.3	Direct Form I, Direct Form II, Transposed Form	1
4.4	Cascade Form and Parallel Form structures	3
5	Finite word length effects in DSP systems (analysis not required)	
5.1	Fixed point and floating-point representation of numbers, Errors resulting from rounding and truncating	3
5.2	Quantization effects of digital filters and FFT algorithms.	2
	Computer architectures for digital signal processing	
5.3	Concepts of Von Neumann and Harvard architectures, Pipelining	1
5.4	Introduction to TMS320C67xx digital signal processor.	2

Assignment:

Assignments can be given from textual exercise problems. Atleast one assignments can be given on spectral analysis or filter design using Matlab or any other software.

Model Question paper

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION

Course Code: AET302

Program: Applied Electronics and Instrumentation Engineering/ Electronics & Instrumentation Engineering

Course Name: Digital Signal Processing

Max. Marks: 100

Duration: 3 Hours

PART A

Answer ALL Questions. Each Carries 3 mark.

1.	How is DFT related to DTFT?	K1	CO1
2	Show the butterfly diagram to find 4 point DFT	K2	CO1
3	Derive the frequency response of linear phase ideal low pass filter	K2	CO2
4	Show the condition for obtaining linear phase characteristics in FIR filters.	K1	CO2
5	What are the advantages of FIR filter over IIR filter?	K1	CO3
6	Explain the need of frequency warping in Bilinear transformation?	K2	CO3
7	Illustrate the implementation of a linear phase FIR filter of length 9 using minimum number of multipliers	K2	CO4
8	Illustrate the direct form II implementation of a system given by the transfer function $H(z) = \frac{8z^3 - 4z^2 + 11z - 2}{(z25)(z^2 - z + 0.5)}$	К2	CO4
9	Compare Von Neumann and Harvard architectures	K2	CO5
10	What is round off error in digital computer?	K1	CO5

PART – B

Answer one question from each module; each question carries 14 marks.

	Module I			
11. a)	If the first 3 points of a 6 point DFT of $x(n) = \{10,3+2j,-4-2j,0\}$. Find other points without doing calculations.	5	K2	CO1
11. b)	Find DFT of the sequence $x(n) = \{1,2,1,2,1,1,1,1\}$ using DITFFT algorithm.	9	K2	CO1
	I E C III OR LOUILA.	-		
12.a)	Verify convolution property of DFT for the sequences $x_1(n)=\{1,2,1,2\}$ and $x_2(n)=\{1,2,-1,1\}$	7	K2	CO1
12.b)	What is the computational advantage of finding 512 point DFT using FFT over direct calculation ?	7	K1	CO1
	Module II			
13.a)	Develop a linear phase FIR filter with the following specifications using window method. $H_d(e^{j\omega}) = e^{-j\alpha\omega}; \begin{array}{l} 0.2\pi \le \omega \le 0.4\pi \\ = 0 & otherwise \end{array}$	9	K3	CO2
	Choose N=7 and Hanning window for the design.			
	Find the filter coefficients and draw the structure of filter.			
13.b)	Explain the design of linear phase FIR filter using frequency sampling technique?	5	K2	CO2
	OR			
14.a)	Apply frequency sampling technique to design a low pass linear phase FIR filter of length N=7 with cut off frequency $\pi/2$ rad/s using type-1 method.	9	К3	CO2
14.b)	Explain the method of designing optimal FIR filters using Minimax method	5	K2	CO2
	Module III			
15.	Design a Butterworth low pass digital IIR filter with a pass band edge frequency of 0.25π with a ripple not exceeding 0.5 dB and a minimum stop band attenuation 15dB with a stop band edge frequency of 0.55π . Use bilinear transformation.	14	K3	CO3
	OR			

16.a)	Determine the digital transfer function obtained by transforming the following causal analog transfer functions using the impulse invariance method. Assume T=0.25 sec	7	K2	CO3
	$H(s) = \frac{2(s+2)}{(s+3)(s^2+4s+5)}$			
16.b)	Give the relevant equations to convert a low pass digital filter transfer function to high pass and band pass filters of similar specifications	4		CO3
16.c)	Compare Butterworth and Chebyshev filter responses	3	K2	CO3
	Module IV			
17.a)	Show the cascade and parallel realizations (direct form II) of an IIR filter with the given transfer function	7	K3	CO4
	$H(z) = \frac{(1 + \frac{1}{2}z^{-1})}{(1 - z^{-1} + \frac{1}{4}z^{-2})(1 - z^{-1} + \frac{1}{2}z^{-2})}$			
17.b)	Given a three stage lattice filter with coefficients $K1 = 0.25$, $K2 = 0.5$ and $K3 = 1/3$, determine the FIR filter coefficients for the direct-form structure.	7	К3	CO4
	OR			
18.a)	Obtain the direct form II, cascade and transposed direct form II structures for the system. y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-1)	10	K3	CO4
18.b)	Determine a direct form realization of the FIR filter with the following filter function $h(n)=\{1,2,3,4,\}$	4	K2	CO4
	Module V			
19.a)	Explain the effect of coefficient quantization in IIR filter structures?	7	K2	CO5
19.b)	With an example illustrate the error introduced by truncation and rounding in fixed point representation of numbers.	7	K2	CO5
	ORU 4			
20	Explain the architecture of TMS320C67xx DSP with block diagram.	14	K2	CO5

Simulation Assignments

- 1) Implementation of FFT algorithms
- 2) Spectral analysis of audio or image signals
- 3) Filtering of noise from audio signals or images
- 4) Study of finite word length effect in digital systems
- 5) Implementing simple DSP projects in DSP processor

AET304	PROCESS DYNAMICS AND	CATEGORY	L	Τ	Р	CREDITS
	CONTROL	PCC	3	1	0	4

Preamble: This course aims to understand the principles of process dynamics and to analyze the various types of process control systems.

Prerequisite: Fundamentals of differential equations and Laplace transform

Course Outcomes: After the completion of the course the student will be able to

CO 1	Explain the characteristics and elements of process dynamics
CO 2	Analyze a process control loop
CO 3	Model and tune a feedback controller
CO4	Analyze multi-loop and multi variable controllers

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	3										2
CO 2	3	3			2							2
CO 3	3	3			2							2
CO 4	3	3			2							2

Assessment Pattern

Bloom's Category		Continuous As Tests	ssessment	End Semester Examination
		1	2	
Remember	K1	10	10	10
Understand	K2	30	30	60
Apply	K3	10	10	30
Analyze	K4			
Evaluate				
Create		201	4 //	

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Explain the characteristic principles and different elements involved in process dynamics

- 1. For a given physical system with resistive or capacitive characteristics, find the period of oscillation and damping.
- Distinguish between the following processes (i) Regulating and non-regulating, (ii) Interacting and non-interacting and (iii) Linear and non linear
- 3. What are the criteria used for selecting the process variables?

Course Outcome 2 (CO2): Analyze control loops.

- 1. For a given control loop, derive the expression for steady state gain and process gain.
- 2. Find the expression for the transfer function of a temperature control system.
- 3. Compare SLPC and MLPC.

Course Outcome 3 (CO3): Model and tune various control systems such as feedback control systems, multi loop as well as nonlinear systems

- 1. Design aspects for a feedback -feedforward control system?
- 2. How can we model a liquid level control system?
- 3. What can you infer from dead band velocity limiting?

Course Outcome 4 (CO4): Analyze multi variable control systems and model-based controllers

- 1. Derive the transfer function of a multi variable control system.
- 2. What is the importance of relative Gain Array?

SYLLABUS

Module 1:

Process characteristics: Incentives for process control, Process Variables types and selection criteria, Process degree of freedom, The period of Oscillation and Damping, Characteristics of physical System: Resistance, Capacitive and Combination of both. Elements of Process Dynamics,

Types of processes- Dead time, Single /multi capacity, self-Regulating /non self-regulating, Interacting /non interacting, Linear/non-linear, and Selection of control action for them. Study of Liquid Processes, Gas Processes, Flow Processes, Thermal Processes in respect to above concepts.

Module 2:

Elements of Process Control Loop: Pneumatic and electric actuators, control valves - characteristics of control valves, valve positioner - I/P and P/I converters- Electronic Controllers. Analysis of Control Loop: Steady state gain, Process gain, Valve gain, Process time constant, Variable time Constant, Transmitter gain, linearizing an equal percentage valve, Variable pressure drop. Analysis of Liquid level Control, Temperature control. SLPC and MLPC features, faceplate, functions, SLPC and MLPC comparison. Scaling: types of scaling, examples of scaling.

Module 3:

Feedback Control: Basic principles, Elements of the feedback Loop, Block Diagram, Control Performance Measures for Common Input Changes, Selection of Variables for Control Approach to Process Control. Controller modes (P, PI, PD and PID) and tuning parameters. Tuning of feedback controllers: Process step testing, tuning for - Quarter Decay ratio response, minimal error integral criteria, sampled data controllers. Controller tuning for integrating processes – model of liquid level control system.

Module 4:

Multi Loop & Nonlinear Systems: Cascade control, Feed forward control, feedback-feed forward control, Ratio control, Selective Control, Split range control- Basic principles, Design Criteria, Performance, Implementation issues, Examples and any special features of the individual loop and industrial applications. Nonlinear Elements in Loop: Limiters, Dead Zones, Backlash, Dead Band Velocity Limiting, Negative Resistance.

Module 5:

Multivariable Control: Concept of Multivariable Control: Interactions and its effects, Modelling and transfer functions, Influence of Interaction on the possibility of feedback control, important effects on Multivariable system behaviour Relative Gain Array, effect of Interaction on stability and tuning of Multi Loop Control system. Model Based controllers: Internal Model control, Model Predictive controller, Dynamic matrix controller (DMC), Self-Tuning Controller.

Text Books

- 1. B.Wayne Bequette, Process Control: Modeling, Design and Simulation, PHI.
- 2. Donald Eckman Automatic Process Control, Wiley Eastern Limited.
- 3. F.G.Shinskey, Process control Systems ,TMH.
- 4. Carlos A. Smith, Armando B. Corripio Principles and practice of Automatic Process Control, John Wiley & Sons, 2nd edition.
- 5. Curtis D Johnson, Process Control Instrumentation Technology, Eighth Edition.

Reference Books

- 1. B.G.Liptak, Handbook of Instrumentation -Process control, Chilton.
- 2. Considine, Process Instrumentation and control Handbook, 5th Ed., McGraw Hill.
- 3. Krishna Kant, Computer Based Industrial Control, PHI.
- 4. Murrill, Applications concepts of Process control, ISA.
- 5. Murrill, Fundamentals of Process Control, ISA.
- 6. Stephanopoulos George, Chemical Process Control, PHI.
- 7. T.J.Ross Fuzzy Logic with Engineering Applications, John Wiley & Sons, 2004.
- 8. Thomas E Marlin Process Control- Designing processes and Control Systems for Dynamic performance, McGraw-Hill International Editions.

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures
1	Process characteristics:	
1.1	Incentives for process control, Process Variables types and selection criteria.	1
1.2	Process degree of freedom, The period of Oscillation and Damping.	1
1.3	Characteristics of physical System: Resistance, Capacitive and	1

	Combination of both.	
1.4	Elements of Process Dynamics, Types of processes- Dead time, Single	3
	/multi capacity, self-Regulating /non self-regulating, Interacting /non	
	interacting, Linear/non-linear, and Selection of control action for them.	
1.7		2
1.5	Study of Liquid Processes, Gas Processes, Flow Processes, Thermal	3
	Processes in respect to above concepts.	
2	Elements of Process Control Loop:	
2.1	Pneumatic and electric actuators	1
2.2	Control valves - characteristics of control valves, Valve Positioner	2
2.3	I/P and P/I converters, Electronic Controllers	1
	Analysis of Control Loop	
2.4	Steady state gain, Process gain, Valve gain, Process time constant,	2
	Variable time Constant, Transmitter gain.	
2.5	Linearizing an equal percentage valve, Variable pressure drop.	2
2.6	Analysis of Liquid level Control, Temperature control.	2
2.7	SLPC and MLPC features, faceplate, functions, SLPC and MLPC	1
	comparison.	
2.8	Scaling: types of scaling, examples of scaling.	1
3	Feedback Control:	
3.1	Basic principles, Elements of the feedback Loop, Block Diagram,	1
3.2	Control Performance Measures for Common Input Changes, Selection	1
	of Variables for Control Approach to Process Control.	
3.3	Controller modes and tuning parameters.	2
	Tuning of feedback controllers:	
3.4	Process step testing, tuning for - Quarter Decay ratio response,	2
	minimal error integral criteria, sampled data controllers.	
3.5	Controller tuning for integrating processes - model of liquid level	1
	control system.	
4	Multi Loop & Nonlinear Systems:	
	Basic principles, Design Criteria and Implementation issues of:	

4.1	Cascade control	1
4.2	Feed forward control	1
4.3	Feedback-feed forward control	1
4.4	Ratio control	1
4.5	Selective Control	1
4.6	Split range control	1
4.7	Examples and any special features of the individual loop and industrial applications	1
4.8	Nonlinear Elements in Loop: Limiters, Dead Zones, Backlash, Dead Band Velocity Limiting, Negative Resistance.	2

5	Multivariable Control:	
5.1	Concept of Multivariable Control: Interactions and its effects, Modelling	2
	and transfer functions, Influence of Interaction on the possibility of	
	feedback control	
5.2	Important effects on Multivariable system behaviour Relative Gain Array, effect of Interaction on stability and tuning of Multi Loop Control system.	2
5.3	Model Based controllers: Internal Model control	1
5.4	Model Predictive controller	1
5.5	Dynamic matrix controller (DMC)	1
5.6	Self-Tuning Controller.	1

Assignment:

Atleast one assignment should be simulation of any one type of controller using MATLAB or SIMULINK.

Model Question paper

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B. TECH DEGREE EXAMINATION

Course Code: AET304

Program: Applied Electronics and Instrumentation Engineering / Electronics & Instrumentation Engineering

Course Name: Process Dynamics and Control

Max. Marks: 100

Duration: 3 Hours

PART A

A server ALL Oresting Fact Control 2 and

	Answer ALL Questions. Each Carries 5 mark.	
1.	Mention the various criteria that is taken into account while selecting variables to control a given process.	K2
2	Define degrees of freedom of a process.	K2
3	Draw the block diagram of a liquid level control loop.	K2
4	What is scaling? What are the different types of scaling?	K2
5	How will you select the best tuning constants for a feedback controller?	К3
6	What do you mean by minimal error integral criteria?	K2
7	Define dead band velocity limiting in non linear systems.	K2
8	Mention few characteristics of cascade control.	K2
9	What is Relative Gain Array? How is it useful in predicting the intertaction on stability in a multivariable control system.	K2
10	List a few features of Internal model control.	K2

PART – B

Answer one question from each module; each question carries 14 marks. **Module – I**

11. a)	Draw the block diagram of a general process control system and explain its elements.	6	CO1	K2
11. b)	Derive the period of oscillation and damping for a second order resistive-capacitive system	8	CO1	К3
	OR			
12.a)	Compare the following systems with suitable examples (a) self-regulating and non self-regulating systems (b) Interacting and non-interacting systems	14	CO1	К3

13 a)	Derive the expression for process gain, valve gain and steady state gain for a flow control system.	8	CO2	K3
13 b)	Compare SLPC and MLPC features.	6	CO2	K2
	OR			
14 a)	Explain linearization of an equal percentage valve into a linear valve.	8	CO2	K2
14 b)	With a neat sketch, explain a temperature control system. Also derive the expression for process time constant.	6	CO2	K3
	Module – III	1	-1	1

Module – II

Module – III

15 a)	Derive the tun process.	ning parameters for a PID controller for a second order	5	CO3	K4
15 b)	Explain a tech example.	nnique for fine tuning of controller with suitable	5	CO3	K3
15 c)	What are the v input changes	4	CO3	K2	
		OR			
16 a)	Explain the ste controller usin	eps involved in tuning a process with feedback ng step testing procedure.	8	CO3	K2
16 b)	How will you Decay ratio res	6	CO3	K3	

Module – IV

17 a)	Explain the multi loop control performance through decoupling	9	CO4	K2
17 b)	Explain in detail about the various tuning techniques used in multi loop control system.	5	CO4	К3
	OR 2014			
18	Write neat sketches explain the following control loops: (a) Ratio control (b) Split range control	14	CO4	K2

Module – V

19	Write notes on:	14	CO4	K3
	(a) Dynamic matrix controllers			
	(b) Model predictive controller			
	OR			

20 a)	Explain the influence on interaction on the possibility of feedback control using a 2x2 system.	8	CO4	K3
20	A multivariable system has the following state-space model	6	CO4	K3
b)	dx/dt = [-3 2; 1 -4]x + [2 0; 0 1]u and y = Ix			
	Obtain the transfer function model matrix for this system.			

AET306	POWER ELECTRONICS	CATEGORY	L	Т	Р	CREDITS
		PCC	3	1	0	4

Preamble: This course aims to develop the skill of the design of various power electronic circuits.

Prerequisite: ECT201 SOLID STATE DEVICES & ECT202 ANALOG CIRCUITS

Course Outcomes: After the completion of the course the student will be able to

CO 1	Explain the characteristics of important power semiconductor swit	tches K2
CO 2	Apply the principle of drive circuits and snubber circuits for power switches	semiconductor K3
CO 3	Build diode bridge rectifiers and Controlled rectifiers	K3
CO4	Develop the principle of DC – DC Switch-Mode Converter.	К3
CO 5	Illustrate the principle of DC – AC Switch-Mode Inverter	K2
CO 6	Apply the principle of power electronics for various applications.	K3

Mapping of course outcomes with program outcomes

	PO 1	PO	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO
		2								10	11	12
CO 1	3	3			2							2
CO 2	3	3	1		2							2
CO 3	3	3			2							2
CO 4	3	3			2							2
CO 5	3	3			2							2
CO 6	3	3			2							2

Assessment Pattern

Bloom's Cate	egory	Continuous A Tests	ssessment	End Semester Examination
		1	2	
Remember	K1	10	10	10
Understand	K2	30	30	60
Apply	K3	10	10	30
Analyse	K4			
Evaluate				
Create				

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment Test(2numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Explain the characteristics of important power semiconductor switches.

- 1. Illustrate the static and dynamic characteristics, Power BJT, Power MOSFET and IGBT.
- 2. Evaluate the switching losses of the Power diode, Power BJT, Power MOSFET.
- 3. Model and simulate power semiconductor switches.

Course Outcome 2 (CO2) : Apply the principle of drive circuits and snubber circuits for power semiconductor switches.

- 1. Design the base drive circuits for Power BJT.
- 2. Design the gate drive circuits forPower MOSFET.
- 3. Outline the principle of snubber circuits for power switches.
- 4. Model and simulate above circuits.

Course Outcome 3 (CO3): Build diode bridge rectifiers and Controlled rectifiers.

- 1. Explain the operation of diode rectifiers and the effect of various loads on the rectifier function.
- 2. Explain the operation of controlled rectifiers and the effect of various loads on the rectifier function.
- 3. Model and simulatediode rectifiers and controlled rectifiers for various loads

Course Outcome 4 (CO4): Develop the principle of DC – DC Switch-Mode Converter

- 1. Illustrate the principle of DC-DC converters under steady state conditions.
- 2. Design non-isolated and isolated DC-DC converters for given specifications.
- 3. Model and simulatenon-isolated and isolated DC-DC Switch-Modeconverters

Course Outcome 5 (CO5): Illustrate the principle of DC – AC Switch-Mode Inverter.

- 1. Understand the different types of inverters
- 2. Construct Driven Inverters for given specifications.
- 3. Model and simulateDriven Inverters

Course Outcome 6 (CO6) : Apply the principle of power electronics for various applications.

- 1. Illustrate the principle of Adjustable-speed DC drive.
- 2. Explain the principle of Variable frequency PWM-VSI Induction Motor drives
- 3. Give atleast two applications of power electronic circuits for residential applications.
- 4. Explain atleast two applications of power electronic circuits for industrial applications.

SYLLABUS

Module 1:

Power Semiconductor Switches: Overview of Power electronics application, Power diodes and Bipolar power transistors, static and dynamic characteristics, Power MOSFET and IGBT, SCR and GTO

Module 2:

Protection circuits and Rectifiers: BJT and MOSFET driver circuits, Snubber circuits, Semiconductor device temperature control, Single phase and three phase diode bridge rectifiers, Single phase and three phase Controlled rectifiers.

Module 3:

DC – **DC Switch-Mode Converter:** Buck, Boost and Buck-Boost converters underContinuous conduction mode, Isolated Converters: Forward, Push-Pull, Half bridge, Full bridge and Flyback configurations, Selection of power switches, Switched Mode Power Supply.

Module 4:

DC – **AC Switch-Mode Inverter:** Inverter topologies, Driven Inverters: Push-Pull, Half bridge and Full bridge configurations, Three phase Inverter, Pulse width modulation.

Module 5:

Applications: DC Motor Drives, Induction Motor Drives, Residential and Industrial applications, Electric utility applications.

Text Books

- 1. Mohan N. and T. M. Undeland, Power Electronics: Converters, Applications and Design, John Wiley, 2015
- 2. Umanand L., Power Electronics Essentials and Applications, Wiley India, 2015.

Reference Books

- 1. Rashid M. H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, Third Edition, New Delhi.
- 2. Daniel W. Hart, Power Electronics, McGraw Hill, 2011.

Course Contents and Lecture Schedule

No	Т <mark>о</mark> ріс	No. of Lectures
1	Power Semiconductor Switches	
1.1	Power electronics versus Linear Electronics, Overview of Power electronics application	1
1.2	Power diodes and Bipolar power transistors, structure, static and dynamic characteristics, ratings	3
1.3	Power MOSFET and IGBT - structure, static and dynamic characteristics,	3
1.4	SCR and GTO – construction and characteristics	2
2	Protection circuits and Rectifiers	
2.1	BJT and MOSFET driver circuits (Atleast two circuits each)	2
2.2	Snubber circuits- On and Off snubbers	1
2.3	Semiconductor device temperature control	1
2.4	Single phase and three phase diode bridge rectifiers – basic principles only	2
2.5	Single phase and three phase Controlled rectifiers (with R, RL & RLE loads) – basic principles only	3
3	DC – DC Switch-Mode Converter	
3.1	Buck, Boost and Buck-Boost DC-DCconverters	2
3.2	Waveforms and expression of DC-DC converters for output voltage, voltage and current ripple under continuous conduction mode.	2
3.3	Isolated Converters : Forward, Push-Pull, Half bridge, Full bridge and Flyback configurations, waveforms and design equations. (Derivation	3

	not required)	
3.4	Selection of power switches	1
3.5	Switched Mode Power Supply, Principles of PWM switching schemes	1
4	DC – AC Switch-Mode Inverter	
4.1	Inverter topologies	2
4.2	Driven Inverters : Push-Pull, Half bridge and Full bridge configurations	2
4.3	Three phase Inverter	2
4.4	Sinusoidal and Space vector modulation PWM in three phase inverters	3
5	Applications	
5.1	DC Motor Drives – Adjustable-speed DC drive	2
5.2	Induction Motor Drives – Variable frequency PWM-VSI drives	3
5.3	Residential and Industrial applications	2
5.4	Electric utility applications	2

Assignment:

Atleast one assignment should be simulation of power electronic circuits using any circuit simulation software.

Model Question paper

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH. DEGREE EXAMINATION

Course Code: AET 306

Program: Applied Electronics and Instrumentation Engineering/ Electronics and Instrumentation Engineering

Course Name: Power Electronics

Max. Marks: 100

Duration: 3Hours

	PART A Answer ALL Questions. Each Carries 3 mark.		
1.	What is the switching losses in a power diode ?	K3	CO1
2	What is the tail current in IGBT ?	K2	CO1
3	What is the purpose of snubbercircuits ?	K2	CO2
4	Obtain the expression for average load voltage in three phase full wave bridge rectifier	K3	CO3
5	What is volt-second balancing?	K2	CO4

6	What is the flux walking problem in push-pull converter ?			
7	What is the distinction between chopper, oscillators and inverters ?			
8	Distinguish between driven and self-driven inverters.			
9	How converters are used in induction heating ?			
10	What is the principle of harmonic filters ?			
	PART – B Answer one question from each module; each question carries 14 marks.			-
	Module – I			
11. a)	Compare and contrast power BJT, MOSFET and IGBT for switching applications	7	CO1	K2
11. b)	b) A diode and a 10 Ω resistor are connected in series to a square wave voltage source of 50V peak. The reverse recovery time for the diode i 200nsec. Find the switching loss of the diode when the input frequency i 100 KHz.			K3
	OR			
12.a)	With the two transistor model of SCR, explain the working principle of SCR	7	CO1	K2
12.b)	Illustrate the dynamic characteristics of GTO	7	CO1	K2
	Module – II			
13.a)	Illustrate the base current requirement of power BJT	7	CO2	K2
b)	b) Explain the operation of any one of the power BJT base drive circuit			K2
	OR			
14.a)	Illustrate the principle of operation of a single-phase, 2 pulse, fully controlled rectifier for RL load with circuit diagram and waveforms.	10	CO3	K2
b)	Deduce the expression for average load voltage in the circuit.	4	CO3	K2

	Module – III			
15 a)	Explain the operation of Buck-Boost converter and illustrate the operation with the inductor current and switching waveforms.	8	CO4	K2
b)	A Buck-Boost converter that switching at 50 KHz is supplied with an input voltage that varies between 5V to 10V. The output is required to be regulated at 15V. A load resistor of 15Ω is connected across the output. If the maximum allowable inductor current ripple is 10% of the average inductor current, estimate the value of the inductance to be used in the Buck-Boost converter.	6	CO4	K3
	OR			

16 a)	Describe the principle of operation of the full-bridge converter with circuidiagram and waveforms.			K2	
b)	How is the flux walking problem solved in full-bridge converter ?				
	Module – IV				
17 a)	Explain the operation of push-pull inverter	8	CO5	K2	
b)	Illustrate the PWM switching scheme for sine wave output of the inverter				
	OR				
18 a)	Enumerate the principle of operation of three phase inverters	8	CO5	K2	
b)	What is Space vector modulation in three phase inverters b)				
	Module – V				
19 a)	Explain the principle of adjustable speed DC drive using switched mode DC-DC converter.	8	CO6	K2	
b)	Compare adjustable speed DC drives using switched mode DC-DC converter and line frequency controlled converter.	6	CO6	K2	
	OR				
20 a)	Illustrate the principle of operation of Variable frequency PWM-VSI Induction Motor drive.	9	CO6	К2	
b)	Explain regenerative braking scheme in Induction Motor drive.	5	CO6	K2	

Simulation Assignments (AET306)

The following simulations can be done in LTPICE or any other circuit simulation software.

- 1. Model and simulate BJT test circuit Fig. 1.50 of Umanand L., Power Electronics Essentials and Applications, Wiley India, 2015, page no.48.
- 2. Model and simulate MOSFET test circuit Fig. 1.51 of Umanand L., Power Electronics Essentials and Applications, Wiley India, 2015, page no.49.
- 3. Model and simulate IGBT test circuit Fig. 1.52 of Umanand L., Power Electronics Essentials and Applications, Wiley India, 2015, page no.50.
- 4. Model and simulate BJT drive test circuit Fig. 2.33 of Umanand L., Power Electronics Essentials and Applications, Wiley India, 2015, page no.86.
- Model and simulate MOSFET drive test circuit Fig. 2.36 of Umanand L., Power Electronics Essentials and Applications, Wiley India, 2015, page no.88.

- 6. Model and simulate MOSFET shunt snubber test circuit Fig. 2.37of Umanand L., Power Electronics Essentials and Applications, Wiley India, 2015, page no.89.
- 7. Model and simulate MOSFET seriessnubber test circuit Fig. 2.39of Umanand L., Power Electronics Essentials and Applications, Wiley India, 2015, page no.90.
- 8. Model and simulate diode rectifiers and controlled rectifiers for various loads.
- 9. Model and simulate Buck converter circuit Fig. 5.68of Umanand L., Power Electronics Essentials and Applications, Wiley India, 2015, page no.277.
- Model and simulate Boost converter circuit Fig. 5.70of Umanand L., Power Electronics Essentials and Applications, Wiley India, 2015, page no.278.
- 11. Model and simulate Buck-boost converter circuit Fig. 5.71of Umanand L., Power Electronics Essentials and Applications, Wiley India, 2015, page no.279.
- 12. Model and simulate Forward converter circuit Fig. 5.72of Umanand L., Power Electronics Essentials and Applications, Wiley India, 2015, page no.280.
- 13. Model and simulate Flyback converter circuit Fig. 5.73of Umanand L., Power Electronics Essentials and Applications, Wiley India, 2015, page no.281.
- 14. Model and simulate Driven Inverters
- 15. Model and simulate Pulse Width Modulator

CODE	COURSE NAME	CATEGORY	L	Τ	P	CREDIT
AET308	COMPREHENSIVE COURSE WORK	РСС	1	0	0	1

Preamble: The objective of this Course work is to ensure the comprehensive knowledge of each student in the most fundamental Program core courses in the curriculum. Five core courses credited from Semesters 3, 4 and 5 are chosen for the detailed study in this course work. This course has an End Semester Objective Test conducted by the University for 50 marks. One hour is assigned per week for this course for conducting mock tests of objective nature in all the listed five courses.

Prerequisite: 1. ECT203 Logic Circuit Design

- 2. ECT205 Network Theory
- 3. ECT204 Signals & Systems
- 4. AET206 Measurements & Instrumentation
- 5. AET 301 Control Systems.

Course Outcomes: After the completion of the course the student will be able to

CO 1	Design and analyze combinational and sequential logic circuits.
CO 2	Apply the knowledge of fundamental network theory in analyzing any given
	network.
CO 3	Analyze continuous and discrete time systems in time and frequency domain using
	various transforms.
	Catal State
CO 4	Illustrate the basic principles involved in measurements and Instrumentation
CO 4 CO 5	Illustrate the basic principles involved in measurements and Instrumentation Describe fundamental concepts of control systems and mathematical modelling of

Mapping of course outcomes with program outcomes

$\overline{\ }$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	Р	Р	Р
										0	0	0
										10	11	12
CO 1	3	3	2									3
CO 2	3	3	2									3
CO 3	3	3	2									3
CO 4	3											3
CO 5	3	3	2									3

Assessment Pattern

Bloom's Category	End Semester Examination			
Remember	10			
Understand	20			
Apply	20			
Analyse				
Evaluate	I DEPARTURE I			
Create		ĿΑ		

Mark distribution

Total Marks	CIE	ESE	ESE Duration
50	0	50	1 hour

End Semester Examination Pattern: Objective Questions with multiple choice (Four). Question paper includes fifty questions of one mark each covering the five identified courses.

Syllabus

Full Syllabus of all Five selected Courses.

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures
1	Logic Circuit Design	
1.1	Mock Test on Module 1 and Module 2	1
1.2	Mock Test on Module 3, Module 4 and Module 5	1
1.3	Feedback and Remedial	1
2	Network Theory	6
2.1	Mock Test on Module 1, Module 2 and Module 3	1
2.2	Mock Test on Module 4 and Module 5	1
2.3	Feedback and Remedial	1
3	Signals & Systems	·
3.1	Mock Test on Module 1 and Module 2	1
3.2	Mock Test on Module 3, Module 4 and Module 5	1
3.3	Feedback and Remedial	1
4	Measurements & Instrumentation	
4.1	Mock Test on Module 1, Module 2 and Module 3	1
4.2	Mock Test on Module 4 and Module 5	1
4.3	Mock Test on Module 1, Module 2 and Module 3	1

5	Control Systems	
5.1	Mock Test on Module 1, Module 2 and Module 3	1
5.2	Mock Test on Module 4 and Module 5	1
5.3	Feedback and Remedial	1

	POWER ELECTRONICS	CATEGORY	L	Τ	Р	CREDIT
AEL332	LAB	РСС	0	0	3	2

Preamble: This course aims to

- i. Familiarize the students with different types of power electronics circuits and application
- ii. Familiarize students with simulation of basic power electronics circuits

Prerequisite: ECL202 - ANALOG CIRCUITS AND SIMULATION LAB

Course Outcomes: After the completion of the course the student will be able to

CO 1	Design and demonstrate the functioning of basic power electronics circuits.
CO 2	Design and simulate the functioning of basic power electronics circuits using simulation tools.
CO 3	Function effectively as an individual and in a team to accomplish the given task.

Mapping of course outcomes with program outcomes

	PO	PO 2	PO 3	PO 4	PO 5	PO 6	PO	PO 8	PO	PO	PO	PO
	1						7		9	10	11	12
CO 1	3	3	3						3			3
CO 2	3	3	3		3				3			2
CO 3	3	3	3		3	3			3			3

Assessment

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	75	75	2.5 hours

Continuous Internal Evaluation Pattern:

Attendance	:	15marks
ContinuousAssessment	:	30 marks
Internal Test (Immediately before the second series test	st:	30marks

End Semester Examination Pattern: The following guidelines should be followed regarding award of marks

(a) Preliminar	y work
----------------	--------

: 15 Marks

- (b) Implementing the work/Conducting the experiment
- (c) Performance, result and inference (usage of equipments and troubleshooting) : 25 Marks
- (d) Vivavoce

: 20 Marks : 5 Marks

: 10 Marks

(e) Record

General instructions: End-semester practical examination is to be conducted immediately after the second series test covering entire syllabus given below. Evaluation is to be conducted under the equal responsibility of both the internal and external examiners. The number of candidates evaluated per day should not exceed 20. Students shall be allowed for the examination only on submitting the duly certified record. The external examiner shall endorse the record.

Part A (At least 8 experiments are mandatory)

- 1 Power BJT drive circuits
- 2. Power MOSFET drive circuits
- 3 Snubber circuits
- 4. Three phase diode bridge rectifier
- 5 Single phase Controlled rectifiers with R, RL loads
- 6 Realization of basic Buck, Boost and Buck-Boost converters
- 7 Realization of half bridge converter
- 8. Application of PWM IC TL 494
- 9. DC to AC inverter using MOSFET & IC
- 10. Realization of simple SMPS

Part B (At least 8 experiments are mandatory)

Experiments shall be done using SPICE/ MATLAB

- 1 Drive circuitsfor Power BJT
- 2. Drive circuits for Power MOSFET
- 3 Snubber circuits shunt and series
- 4. Three phase diode bridge rectifier
- 5 Single phase Controlled rectifiers with R, RL loads

- 6 Realization of Buck, Boost and Buck-Boost converters. Study its Continuous and discontinuous conduction mode
- 7 Realization of Isolated Converters : Push-Pull, Half bridgeand Full bridge configurations
- 8. DC to AC inverter using MOSFET
- 9. Realization of simple SMPS
- 10. DC motor speed control

CODE	COURSE NAME	CATEGORY	L	Т	P	CREDIT
AED 334	MINIPROJECT	PWS	0	0	3	2

Objectives

- For enabling the students to apply the knowledge to address the real-world situations/problems and find solutions.
- To estimate the ability of the students in transforming the theoretical knowledge studied in to a working model of an electronic system.
- Design and development of Small electronic project based on hardware or a combination of hardware and software for electronics systems.

Course Plan

In this course, each group consisting of three/four members is expected to design and develop a moderately complex electronic system with practical applications, this should be a working model. The basic concept of product design may be taken into consideration

Students should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews.

The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight.

Expected outcome

- 1. Students will be able to practice acquired knowledge within the selected area of technology for project development.
- 2. Identify, discuss and justify the technical aspects and design aspects of the project with a systematic approach.
- 3. Reproduce, improve and refine technical aspects for engineering projects.
- 4. Work as a team in development of technical projects.
- 5. Communicate and report effectively project related activities and findings.

Evaluation

The internal evaluation will be made based on the product, the report and a viva- voce examination, conducted by a 3-member committee appointed by Head of the Department comprising HoD or a senior faculty member, Academic coordinator for that program, project guide/coordinator.

The Committee will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement.

Total Marks	150
CIE	75
ESE	75

Split up for CIE	
Attendance	10
Marks awarded by Guide	15
Project Report	10
Evaluation by the Committee	40
Split up for ESE	
Demonstration	50
Project Report	10
Viva-Voce	15

SEMESTER VI PROGRAM ELECTIVE I

ECT312	DIGITAL SYSTEM DESIGN	CATEGORY	L	Т	Р	CREDIT
		PEC	2	1	0	3

Preamble: This course aims to design hazard free synchronous and asynchronous sequential circuits and implement the same in the appropriate hardware device

Prerequisite: ECT203 Logic Circuit Design

Course Outcomes: After the completion of the course the student will be able to

CO 1 K4	Analyze clocked synchronous sequential circuits
CO 2 K4	Analyze asynchronous sequential circuits
CO 3 K3	Design hazard free circuits
CO 4 K3	Diagnose faults in digital circuits
CO 5 K2	Summarize the architecture of FPGA and CPLDs

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	3		2	-			2	2		3
CO2	3	3			2				2	2		3
CO3	3	3	3	3		Esto	1		2	2		3
CO4	3	2		1	1	20			2	2		3
CO5	2								2	2		3

Assessment Pattern

Bloom's Category		Continuous Tests	Assessment	End Semester Examination			
		1	2	1			
Remember	K1	10	10	15			
Understand	K2	10	20	30			
Apply	K3	20	20	35			
Analyse	K4	10		20			
Evaluate							
Create							

Mark distribution

Total	CIE	ESE	ESE
Marks			Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	
Continuous Assessment Test (2 numbers)	
Assignment/Quiz/Course project	

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

: 10 marks : 25 marks : 15 marks

Course Level Assessment Questions

Course Outcome 1 (CO1): Analyze clocked synchronous sequential circuits (K4)

- 1. Construct an ASM chart for a sequence recognizer to recognize the input sequence of pairs x1x2=01, 01, 11, 00. The output variable, 'z' is asserted when x1x2=00 if and only if the three preceding pairs of inputs are x1x2=01, 01 and 11, in that order.
- 2. Obtain a minimal state table for a clocked synchronous sequential network having a single input line 'x' in which the symbols 0 and 1 are applied and a single output line 'z'. An output of 1 is to be produced if and only if the 3 input symbols following two consecutive input 0's consist of at least one 1. An example of input/output sequences that satisfy the conditions of the network specifications is:

3. Analyse the following clocked synchronous sequential network. Derive the next state and output equations. Obtain the excitation table, transition table, state table and state diagram.

Course Outcome 2 (CO2): Analyze asynchronous sequential circuits (K4)

1. A reduced flow table for a fundamental-mode asynchronous sequential network is given below. Using the universal multiple-row state assignment, construct the corresponding expanded flow table and transition table. Assign outputs where necessary such that there is at most a single output change during the time the network is unstable. Assume that the inputs x1 and x2 never change simultaneously.

	Next state Output (z)					ut (z)	A			
Present state		Ŀ	nput stat	$e(x_1x_2)$)](Input state (x ₁ x ₂)				
		00	01	10	11	00	01	10	11	
А		A	В	A	D	-1	1 . I	0	-	
В		D	B	B	С	-	0	1	-	
С		А	C	C	C	-	1	1	0	
D		\bigcirc	С	A		0	-	-	1	

2. Analyze the asynchronous sequential network by forming the excitation/transition table, state table, flow table and flow diagram. The network operates in the fundamental mode with the restriction that only one input variable can change at a time.

3. Describe races in ASN with example.

Course Outcome 3 (CO3): Design hazard free circuits (K3)

- 1. Differentiate between static and dynamic hazard.
- 2. Examine the possibility of hazards in the (i) OR-AND logic circuit whose Boolean function is given by $f = \sum (0,2,6,7)$ (ii) AND-OR logic circuit whose Boolean function is

given by $f = \sum (3,4,5,7)$. Show how the hazard can be detected and eliminated in each circuit.

3. Investigate the problem of clock skew in practical sequential circuits and suggest solutions with justification to minimize or eliminate it.

Course Outcome 4 (CO4): Diagnose faults in digital circuits (K3)

- 1. Illustrate the fault table method used for effective test set generation for the circuit whose Boolean function is $z = \overline{x_1}x_2 + x_3$
- 2. Find the test vectors of all SA0 and SA1 faults of the circuit whose Boolean function is

$$f = \bar{x}_1 x_2 + x_1 x_2 x_3$$
 by the Kohavi algorithm.

3. Write a note on BIST techniques.

Course Outcome 5 (CO5): Summarize the architecture of FPGA and CPLDs (K2)

- 1. Draw and explain the architecture of Xilinx XC4000 configurable logic block.
- 2. Draw and explain the architecture of Xilinx 9500 CPLD family.
- 3. Explain the internal structure of XC4000 input/output block.

SYLLABUS

Module 1: Clocked Synchronous Networks

Analysis of clocked Synchronous Sequential Networks (CSSN), Modelling of CSSN – State assignment and reduction, Design of CSSN, ASM Chart and its realization

Module 2: Asynchronous Sequential Circuits

Analysis of Asynchronous Sequential Circuits (ASC), Flow table reduction- Races in ASC, State assignment problem and the transition table- Design of AS, Design of ALU

Module 3: Hazards

Hazards – static and dynamic hazards – essential, Design of Hazard free circuits – Data synchronizers, Mixed operating mode asynchronous circuits, Practical issues- clock skew and jitter, Synchronous and asynchronous inputs – switch bouncing

Module 4: Faults

Fault table method – path sensitization method – Boolean difference method, Kohavi algorithm, Automatic test pattern generation – Built in Self Test (BIST)

Module 5: CPLDs and FPGA

CPLDs and FPGAs - Xilinx XC 9500 CPLD family, functional block diagram- input output block architecture - switch matrix, FPGAs - Xilinx XC 4000 FPGA family - configurable logic block - input output block, Programmable interconnect

Text Books

- 1. Donald G Givone, Digital Principles & Design, Tata McGraw Hill, 2003
- 2. John F Wakerly, Digital Design, Pearson Education, Delhi 2002
- 3. John M Yarbrough, Digital Logic Applications and Design, Thomson Learning

Reference Books

- 1. Miron Abramovici, Melvin A. Breuer and Arthur D. Friedman, Digital Systems Testing and Testable Design, John Wiley & Sons Inc.
- 2. Morris Mano, M.D.Ciletti, Digital Design, 5th Edition, PHI.
- 3. N. N. Biswas, Logic Design Theory, PHI
- 4. Richard E. Haskell, Darrin M. Hanna , Introduction to Digital Design Using Digilent FPGA Boards, LBE Books- LLC
- 5. Samuel C. Lee, Digital Circuits and Logic Design, PHI
- 6. Z. Kohavi, Switching and Finite Automata Theory, 2nd ed., 2001, TMH

Course Contents and Lecture Schedule

No	Tania	No. of	
	горіс	Lectures	
1	Clocked Synchronous Networks		
1.1	Analysis of clocked Synchronous Sequential Networks(CSSN)	2	
1.2	Modelling of CSSN – State assignment and reduction	2	
1.3	Design of CSSN	2	
1.4	ASM Chart and its realization	1	
2	Asynchronous Sequential Circuits		
2.1	Analysis of Asynchronous Sequential Circuits (ASC)	2	
2.2	Flow table reduction- Races in ASC	2	
2.3	State assignment problem and the transition table- Design of AS	2	
2.4	Design of ALU	2	
3	Hazards	•	
3.1	Hazards – static and dynamic hazards – essential	1	
3.2	Design of Hazard free circuits – Data synchronizers	1	
3.3	Mixed operating mode asynchronous circuits	1	
3.4	Practical issues- clock skew and jitter	1	
3.5	Synchronous and asynchronous inputs – switch bouncing	2	
4	Faults	•	
4.1	Fault table method – path sensitization method – Boolean difference method	2	
4.2	Kohavi algorithm	2	
4.3	Automatic test pattern generation – Built in Self Test(BIST)	3	
5	CPLDs and FPGA		
5.1	CPLDs and FPGAs - Xilinx XC 9500 CPLD family, functional block diagram– input output block architecture - switch matrix	3	
5.2	FPGAs – Xilinx XC 4000 FPGA family – configurable logic block - input output block, Programmable interconnect	3	

Simulation Assignments:

At least one assignment should be design of digital circuits that can be used in day today life. This has to be done in a phased manner. The first phase involves the design in HDL (VHDL/ Verilog) and the second phase implementing the same in a hardware device. Some of the assignments are as listed below:

- 1. Design of vending machine
- 2. Design of ALU
- 3. Architecture of different FPGAs
- 4. Architecture of different CPLDs
- 5. Fault detection methods other than those mentioned in the syllabus
- 6. Metastability condition and methods to avoid it

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION, (Model Question Paper)

Course Code: ECT312

Course Name: DIGITAL SYSTEM DESIGN

Max. Marks: 100

Duration: 3 Hours

8

PART A

Answer ALL Questions. Each carries 3 marks.

1	Differentiate Mealy and Moore models.	K1
2	What are the elements in an ASM chart?	K1
3	Describe one-hot assignment technique.	K2
4	Define critical and non-critical races.	K1
5	What is jitter? List the sources of clock jitter.	K2
6	Differentiate positive skew and negative skew.	K2
7	List the different types of faults in digital circuits.	K1
8	Differentiate between fault and defect.	K2
9	What are FPGA? What are the advantages of FPGA?	K1
10	Differentiate between FPGA and CPLD	K2

PART – B

Answer one question from each module; each question carries 14 marks.

Module - I

11 a Analyze the following sequential network. Derive the next state and output equations. Obtain its transition table and state table.

X' CO1 В K4 A' A B' В X CK DA CK KB JB CLOCK X Ŕ

b. Construct an ASM chart for the following state diagram shown. Determine the

model of CSSN that this system conforms to with proper justification.

6

CO1

12 For the clocked synchronous sequential network, construct the excitation table, transition table, state table and state diagram.

K4

b. Obtain a minimal state table for a clocked synchronous sequential network having a single input line 'x' in which the symbols 0 and 1 are applied and a single output line 'z'. An output of 1 is to be produced if and only if the 3 input symbols following two consecutive input 0's consist of at least one 1. An example of input/output sequences that satisfy the conditions of the network specifications is:

x = 0100010010010010000000011

z= 0000001000000100000000001

CO1

6

13a Analyze the asynchronous sequential network by forming the excitation/transition table, state table, flow table and flow diagram. The network operates in the fundamental mode with the restriction that only one input variable can change at a time.

14a A reduced flow table for a fundamental-mode asynchronous sequential network is given below. Using the universal multiple-row state assignment, construct the corresponding expanded flow table and transition table. Assign outputs where necessary such that there is at most a single output change during the time the network is unstable. Assume that the inputs and never change simultaneously.

CO2 K4

14

	Next state				Output (z)					
Present state	I	nput stat	$e(x_1x_2)$			Input state $\begin{pmatrix} x_1 x_2 \end{pmatrix}$				
	00	01	10	11	00	01	10	11		
А	A	В	A	D	1	-	0	-		
В	D	B	B	С	-	0	1	-		
С	A	C	C	C	-	1	1	0		
D	D	С	A	D	0	-	-	1		

14

CO2 K4

Module - III

15a.	Examine the possibility of hazard in the OR-AND logic circuit whose Boolean function is given by $f = \sum(0,2,6,7)$. Show how the hazard can be detected and eliminated.	8 C
b.	Explain essential hazards in asynchronous sequential networks. What are the constraints to be satisfied to avoid essential hazards?	K 6
	API ABDORL KALAM	C K
16a	Draw the logic diagram of the POS expression $Y = (x1+x2') (x2+x3)$. Show that there is a static-0 hazard when x1 and x3 are equal to 0 and x2 goes from 0 to 1. Find a way to remove the hazard by adding one or more gates.	9 С К
b	Discuss the concept of switch bouncing and suggest a suitable solution.	5 K
	Module - IV	
17a	Illustrate the fault table method used for effective test set generation for the circuit	8
	whose Boolean function is $z = \overline{x_1}x_2 + x_3$	C K
b	How can the timing problems in asynchronous sequential circuits be solved using mixed operating mode circuits?	6
	OR	K
18	Find the test vectors of all SA0 and SA1 faults of the circuit whose Boolean	8
8	^{1.} function is $f = \bar{x}_1 x_2 + x_1 x_2 x_3$ by the Kohavi algorithm.	C K
ł	² Identify different test pattern generation for BIST	6
		C K
	Module - V	
19	Explain the architecture of XC 4000 FPGA family.	1 С к
	OR	N
20	Draw and explain the architecture of Xilinx 9500 CPLD family. Also explain the function block architecture.	1 C

K2

AET322 DIGITAL IMAGE PROCESSING CATEGORY

Preamble: This course aims to develop a strong understanding of the basic image processing operations.

CREDITS

3.110

L

2 1

Т

Р

< 0

Prerequisite: ECT204 Signals and Systems

Course Outcomes: After the completion of the course, the student will be able to

CO 1	Explain the fundamental concepts related to digital image processing and generation of digital images.
CO 2	Apply the principles of various 2D transforms in digital image processing.
CO 3	Implement spatial and frequency domain image enhancement techniques using mathematical principles.
CO4	Interpret the techniques involved in image segmentation and image restoration algorithms.
CO5	Compare different techniques involved in image compression and implement the fundamental image processing algorithms on computers.

Mapping of course outcomes with program outcomes

	PO	PO	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12
	1	2										
CO 1	3			11	3	3						3
CO 2	3	3			3	3						3
CO 3	3	3			3	3						3
CO 4	3	3			3	3						3
CO5	3	3	3		3	3			3		- 1	3

Assessment Pattern

Bloom's Category		Continuous A Tests	ssessment	End Semester Examination
		1	2	
Remember	K1	10	10	20
Understand	K2	30	30	60
Apply	K3	10	10	20
Analyse	K4			
Evaluate				
Create				

Mark distribution

Total	CIE	ESE	ESE Duration
Marks			
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Explain the fundamental concepts related to digital image processing and generation of digital images.

- 1. Explain the fundamental steps in image processing.
- 2. Explain image digitization.

Course Outcome 2 (CO2): Apply the principles of various 2D transforms in digital image processing.

- 1. Explain the properties of 2D DFT.
- 2. Find the KL transform for the given image patch.

Course Outcome 3 (CO3): Implement spatial and frequency domain image enhancement techniques using mathematical principles.

- 1. Explain the various spatial domain image enhancement techniques.
- 2. Compare smoothening and sharpening filters.

Course Outcome 4 (CO4): Interpret the techniques involved in image segmentation and image restoration algorithms.

- 1. Explain region based segmentation.
- 2. What is image restoration? Give the model of image degradation/restoration process.

Course Outcome 5 (CO5): Compare different techniques involved in image compression and implement the fundamental image processing algorithms on computers.

- 1. Explain an image compression model.
- 2. Obtain the Huffman code for the word 'SEGMENTATION'

SYLLABUS

Module 1:

Image fundamentals: Fundamental Steps in Image Processing, Elements of a Digital Image Processing System, Elements of Visual Perception, A Simple Image Model. Digital Image representation- 2D Sampling and Quantization. Two dimensional systems - 2D convolution. Colour image fundamentals-RGB, CMY, HIS models

Module 2:

Image transforms: Introduction to Fourier Transform, 2D Discrete Fourier Transform and Properties. Hadamard Transform, Walsh transform, Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), KL transform and Singular Value Decomposition.

Module 3:

Image Enhancement in spatial domain: Point operations and Neighbourhood Operations, Gray-Level Transformation, Bit plane slicing, Histogram Processing. Spatial filtering- smoothing filters, sharpening filters. Image Enhancement in frequency domain: Low pass and high pass filters, homomorphic filtering.

Module 4:

Image Restoration: Image Degradation model, Classification of image restoration Techniques, Estimation of degradation function. Inverse filtering, Weiner filtering.

Image segmentation: Classification of Image segmentation techniques, Type of edges, Edge detection, Segmentation based on thresholding, Region based segmentation.

Module 5:

Image Compression: Types of redundancy, Image Compression Model, Lossless Compression methods: Arithmetic Coding, Huffman Coding, Vector quantization.

Image compression standards - JPEG &MPEG, Wavelet based image compression.

Text Books

- 1. Gonzalez Rafel C, Digital Image Processing, Pearson Education, 2009
- 2. S Jayaraman, S Esakkirajan, T Veerakumar, Digital image processing, Tata Mc Graw Hill, 2015.

Reference Books

- 1. Anil K Jain, Fundamentals of digital image processing: , PHI,1988
- 2. Kenneth R Castleman, Digital image processing:, Pearson Education, 2/e, 2003
- 3. Pratt William K, Digital Image Processing: , John Wiley, 4/e, 2007.
- 4. Milan Sonka et. al., 'Image Processing, Analysis and Machine Vision', Brookes/Cole, Vikas Publishing House, 2nd edition, 1999.

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures
1	Image Fundamentals	
1.1	Fundamental Steps in Image Processing, Elements of a Digital Image Processing System	1
1.2	Elements of Visual Perception, A Simple Image Model.	1
1.3	Digital Image representation- 2D Sampling and Quantization	2
1.4	Two dimensional systems - 2D convolution	1
1.5	Colour image fundamentals-RGB, CMY, HIS models	2
2	Image transforms	
2.1	Introduction to Fourier Transform, 2D Discrete Fourier Transform and Properties.	2
2.2	Hadamard Transform, Walsh transform, Discrete Cosine Transform (DCT),	2
2.3	Discrete Wavelet Transform (DWT)	1
2.4	KL transform and Singular Value Decomposition.	2
3	Image Enhancement	
3.1	Point operations and Neighbourhood Operations, Gray-Level Transformation, Bit plane slicing	2
3.2	Histogram Processing	2
3.3	Spatial filtering- smoothing filters, sharpening filters	1
3.4	Image Enhancement in frequency domain: Low pass and high pass filters, homomorphic filtering.	2
4	Image Restoration	
4.1	Estimation of degradation function, Image Degradation model, Classification of image restoration Techniques.	2
4.2	Inverse filtering, Weiner filtering	1
4.3	Image segmentation : Classification of Image segmentation techniques, Type of edges, Edge detection	2
4.4	Segmentation based on thresholding, Region based segmentation.	2
5	Image Compression	
5.1	Types of redundancy, Image Compression Model	2
5.2	Lossless Compression methods : Arithmetic Coding, Huffman Coding	2
5.3	Vector quantization. Image compression standards -JPEG &MPEG	2
5.4	Wavelet based image compression.	1

Model Question paper

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION

Course Code: AE322

Program: Applied Electronics and Instrumentation Engineering / Electronics and Instrumentation Engineering

Course Name: Digital Image Processing

Max. Marks: 100

Duration: 3 Hours

PART A

Answer ALL Questions. Each Carries 3 mark.

1.	Explain the fundamental steps in image processing.	CO1
2	What is image digitization?	CO1
3	For the image segment I = $\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$, compute the transform coefficients using DFT.	CO2
4	What are orthogonal transforms?	CO2
5	Distinguish between unsharp masking and high boost filtering.	CO3
6	What is histogram equalization?	CO3
7	Give the model of image degradation/restoration process and explain.	CO4
8	Mention the different types of edges in an image.	CO4
9	State and explain the state of redundancies in images.	CO5
10	Draw the block diagram of an image compression model.	CO5

PART – B

Answer one question from each module each question carries 14 marks.

Module – I

a)	11. a)	State and explain 2D sampling theorem for band limited images.	8	CO1	K1	
----	-----------	--	---	-----	----	--

11. b)	Explain how colour images are represented using HSI colour space model.	6	CO1	K2
	OR			
12.a)	An image $f(x, y) = 2 \cos 2\pi (3x + 4y)$ is sampled with sampling	7	CO1	K3
	intervals $\Delta x = 0.2$ and $\Delta y = 0.2$ in x and y direction respectively.			
	Determine the			
	i) Sampled image spectrum			
	ii) Fourier transform of image after it has been low			
	pass filtered			
	iii) Reconstructed image.			
	Will the system produce aliasing error?			
12.b)	Explain the basic elements in a digital image processing system.	7	CO1	K2

Module – II

13. a)	State and prove any two properties of 2D DFT.	8	CO2	K2
13. b)	Find the DCT of the sequence $x(n) = \{11, 22, 33, 44\}$	6	CO2	K2
	OR			
14.a)	Perform KL transform of the following matrix $X = \frac{4 - 1}{-2 - 3}$	10	CO2	K2
14.b)	Define the energy compaction property of a unitary transform.	4	CO2	K1

MODULE III

	OR			
15. b)	Briefly explain the various image enhancement operations in spatial domain.	8	CO3	K2
15. a)	Given an image in which the stars are barely visible, owing to superimposed illumination resulting from atmospheric dispersion. Give an enhancement procedure based on homomorphic filtering to bring out the image components due to the stars themselves.	6	CO3	K3

16.a)	What are the advantages of filtering in frequency domain?	4	CO3	K1
16.b)	A 4 x 4 image patch (4 bits/pixel) is given by I= $\begin{bmatrix} 12 & 9 & 12 & 10 \\ 12 & 14 & 8 & 10 \\ 9 & 13 & 12 & 10 \\ 12 & 14 & 12 & 10 \end{bmatrix}$	10	CO3	K3
	Apply histogram equalization to the image by rounding the resulting image pixels to integers. Sketch the histograms of original image and histogram equalised image.			

	MODULE IV	l		
17. a)	Explain the Wiener filter for image restoration. State the advantages and disadvantages of wiener filter.	8	CO4	K2
17. b)	Explain split and merge procedure in image segmentation.	6	CO4	K2
	OR			
18.a)	Explain how a degraded image can be restored using an inverse filter. Explain its limitations.	7	CO4	K2
18.b)	How edge detection is performed in images?	7	CO4	K2

Module – V

19.a)	With the help of a block diagram, explain DCT based JPEG compression standard.	8	CO5	K2
19.b)	Explain the analytics of Arithmetic Coding based Compression.	6	CO5	K2
	OR			
20.a)	Obtain the Huffman code for the word 'SEGMENTATION'	7	CO5	K3
20.b)	Discuss Vector quantization.	7	CO5	K2

AET332	APPLIED ELEC	CATEGORY	ЯI.	KΦIN	P	CREDITS
	COMPUTER NETWORKS	PEC	2	1	0	3

Preamble: This course aims to impart the basics of computer networking, various functional layers and their functions and the associated protocols.

Prerequisite: Nil.

Course Outcomes: After the completion of the course the student will be able to

CO1	Summarize the functions of each layer in the reference models.
CO2	Explain the addressing at the data link layer, and various media access control methods
CO3	Explain various services and addressing schemes at the network layer
CO4	Review the transport layer services, TCP and UDP
CO5	Summarize the application layer protocols and the concept of flow control for improving QOS.

Mapping of course outcomes with program outcomes

	PO	PO	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO
	1	2								10	11	12
CO 1	3											2
CO 2	3											2
CO 3	3	3										2
CO 4	3											2
CO 5	3	3									5	2

Assessment Pattern

Bloom's Category		Continuous Ass Tests	sessment	End Semester Examination
		1	2	
Remember	K1	30	30	60
Understand	K2	20	20	40
Apply	K3	201		
Analyse	K4			
Evaluate				
Create				

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern: DELECTRONICS & INSTRUMENTATION

Attendance	: 10marks
Continuous Assessment Test (2numbers)	: 25 marks
Assignment/Quiz/Courseproject	: 15marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Summarize the functions of each layer in thereference models.

- 1. Explain the function of data link layer.
- 2. Compare the characteristics of guided and unguided transmission media.
- 3. Compare circuit switching with packet switching.
- 4. Explain TCP/IP protocol suite.

Course Outcome 2 (CO2): Explain the addressing at the data link layer, and various media access control methods.

- 1. Explain transparent routing of bridges.
- 2. Compare various multiple access protocols.
- 3. Explain Selective Repeat ARQ protocol.
- 4. Compare Standard Ethernet, Fast Ethernet and Gigabit Ethernet.

Course Outcome 3 (CO3): Explain the addressing schemes at the network layer, and various routing algorithms.

- 1. Explain classless interdomain routing.
- 2. What is the use of extension header in IPv6?
- 3. Explain IPv6 header format.
- 4. Explain ARP with the format of a packet.

Course Outcome 4 (CO4): Describe the transport layer services, and TCP and UDP.

- 1. Compare connection oriented and connectionless protocols.
- 2. Compare TCP and UDP services.
- 3. Explain implicit and explicit signaling for congestion control.
- 4. TCP is a reliable data protocol. Justify the statement.

Course Outcome 5 (CO5): Summarize the application layer protocols and the concept of flow control for improving QOS.

- 1. Explain the flow control mechanism in TCP.
- 2. Explain WWW and HTTP.
- 3. Write notes on SNMP.
- 4. Explain how an email is sent using SMTP.

MODULE I

Networks: Network types, Topology, Protocol layering, TCP/ IP protocol suite, The OSI model. **Physical layer:** Guided and unguided transmission media, Circuit switched networks, Packet switched networks

SYLLABUS

MODULE II

Data-Link Layer: Link-Layer addressing, Peer-to-peer protocols, Stop-and-wait ARQ protocol, Go-back-N ARQ protocol, Selective-repeat ARQ protocol.

Media Access Control (MAC): Random access: ALOHA, CSMA, Controlled access, Channelization.

Wired LAN (Ethernet): Ethernet protocol, Standard Ethernet, Fast Ethernet (100 Mbps), Gigabit Ethernet, LAN bridges and Ethernet switches,

MODULE III

Network layer: Network layer services, Packet switching, IPv4 header, IPv4 addressing, subnet addressing, IP routing, Classless Interdomain Routing, Address resolution, fragmentation and reassembly, IPv6 header format, IPv6 addressing, extension headers.

MODULE IV

Transport layer: Transport layer services, Connectionless and connection-oriented protocols.

User Datagram Protocol (UDP): User datagram, UDP services, UDP applications.

Transmission Control Protocol (TCP): TCP Services, TCP features, Segment, TCP connection establishment and connection termination, Congestion Control.

MODULE V

Application Layer: HTTP, World Wide Web, FTP, Domain Name System, Electronic Mail, SNMP.

Quality of Service: Data-flow characteristics, Flow control to improve QOS.

Text Books

- 1. Forouzan, Data Communications and Networking, 5/e, Mc Graw Hill, 2013.
- 2. Leon Garcia and Indra Widjaja, Communication Networks, 2/e, Mc Graw Hill, 2013.

Reference Books

- 1. Larry L. Peterson & Bruce S. Dave, Computer Networks-A Systems Approach, 5/e, Morgan Kaufmann, 2011.
- 2. William Stallings, Data and Computer Communications, 9/e, Pearson, 2014.
- 3. Dimitri Bertsekas and Robert Gallager, 2/e, Pearson, 2015.
- 4. Andrew S Tanenbaum, Computer Networks, 4/e, Pearson, 2003.

Course Contents and Lecture Schedule

No.	Topic NOIL	No. of lecture
1	Networks	
1.1	Network types, Topology	1
1.2	Protocol layering	1
1.3	TCP/ IP protocol suite	1
1.4	The OSI model	1
	Physical layer	
1.5	Guided and unguided transmission media	1
1.6	Circuit switched networks	1
1.7	Packet switched networks	1
2	Data-Link Layer	
2.1	Link-Layer addressing	1
2.2	Peer-to-peer protocols	1
2.3	Stop-and-wait ARQ protocol, Go-back-N ARQ protocol, Selective-	1
	repeat ARQ protocol	
	Media Access Control (MAC)	
2.4	Random access: ALOHA, CSMA	1
2.5	Controlled access, Channelization	1
	Wired LAN (Ethernet)	
2.6	Ethernet protocol, Standard Ethernet, Fast Ethernet (100 Mbps),	1
	Gigabit Ethernet,	
2.7	LAN bridges and Ethernet switches	1
3	Network layer	
3.1	Network layer services, Packet switching	1
3.2	IPv4 header, IPv4 addressing, subnet addressing	1

3.3	IP routing, APPLIED ELECTRONICS & INSTR	UMENTATION
3.4	Classless Interdomain Routing	1
3.5	Address resolution	1
3.6	fragmentation and reassembly	1
3.7	IPv6 header format, IPv6 addressing, extension headers	1
4	Transport layer	_
4.1	Transport layer services, Connectionless and connection-oriented protocols	1
	User Datagram Protocol (UDP)	
4.2	User datagram	1
4.3	UDP services, UDP applications	1
	Transmission Control Protocol (TCP)	
4.4	TCP Services, TCP features	1
4.5	Segment	1
4.6	TCP connection establishment and connection termination,	1
4.7	Congestion Control	1
5	Application Layer	
5.1	World Wide Web, FTP	1
5.2	Domain Name System	1
5.3	Electronic Mail	1
5.4	SNMP	1
	Quality of Service	
5.5	Data-flow characteristics	1
5.6	Flow control to improve QOS	2
	2014	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION

Course Code: AET 332

Program: Applied Electronics and Instrumentation Engineering/Electronics and Instrumentation Engineering

Course Name: Computer Networks

Max. Marks: 100 Hours Duration: 3

PART A

Answer ALL Questions. Each Carries 3 marks.

1.	Mention different types of computer networks.	CO1	K1
2.	Compare guided and unguided transmission media.	CO1	K2
3.	What are the functions of a LAN bridge?	CO2	K1
4.	Name and discuss about the switching devices at different functional layers.	CO2	K2
5.	What is meant by fragmentation and reassembly?	CO3	K1
6.	Explain the concept of subnet addressing.	CO3	K1
7.	Compare congestion control and flow control.	CO4	K2
8.	Discuss about UDP services.	CO4	K1
9.	Which are the messages sent between the client and server during the mail	CO5	K2
	transfer phases?		
10.	Explain one of the scheduling techniques used to improve QOS.	CO5	K1

PART – B

Answer one question from each module; each question carries 14 marks.

Module – I

11.	Explain OSI reference model.	14	CO1	K1
	OR			
12 a).	Compare circuit-switched and packet-switched networks.	5	CO1	K2
12 b).	Explain different phases involved in circuit switching.	9	CO1	K1

Module – II

13.	Explain various ARQ protocols and compare them.	14	CO2	K2
	OR			
14.	Explain the characteristics, frame format and addressing of standard	14	CO2	K1

	Ethernet.	APPLIED ELECTRONICS & INSTRUMENTATION	
--	-----------	---------------------------------------	--

Module – III

15 a).	Draw IPV4 header format and explain various fields.	9	CO3	K1	
15 b).	Explain the major changes in IPv6 compared to IPv4.5				
	OR				
16 a).	Draw IPV6 header format and explain various fields.	9	CO3	K1	
16 b).	Compare classful and classless addressing in IPv4.	5	CO3	K2	
	Module – IV	1			

|--|

17 a).	Draw TCP header format and explain various fields. 9 CO4 I					
17 b).	Explain send window and receive window in TCP5CO4K2					
	OINTYOR					
18 a).	Explain the slow start algorithm for congestion control.	9	CO4	K1		
18 b).	Explain congestion avoidance with a suitable algorithm.	5	CO4	K2		

Module – V

		1		
19 a).	Explain FTP with some examples of FTP commands.	9	CO5	K1
,				
19 b).	List the identifiers used to define a web page. Give examples for	5	CO5	K2
	URL.			
	OR			
20 a).	Explain traffic shaping or policing to improve OOS.	9	CO5	K1
20 u).	Explain during of pononig to improve Que.	_	000	
20 b).	Compare persistent and nonpersistent connections in HTTP.	5	CO5	K2
200).		2	200	112

AET342	BIOMEDICAL ED ELEC	CATEGORY	$^{\rm 2}\Gamma$	<' T	P	CREDITS
AL 1342	INSTRUMENTATION	PEC	2	1	0	3

Preamble: This course aims to familiarize principles of various biomedical instrumentation systems.

Prerequisite: AET206 Measurements & Instrumentation

Course Outcomes: After the completion of the course the student will be able to

CO 1	Describe the basic principles of physiological systems of human body.
CO 2	Illustrate the design principles and development of various biomedical instruments.
CO 3	Explain the principle of patient monitoring systems and identify safety issues related to biomedical instrumentation.
CO4	Describe the applications of medical imaging techniques in biomedical instrumentation.

Mapping of course outcomes with program outcomes

	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12
CO 1	3					3	3					3
CO 2	3					3	3					3
CO 3	3					3	3					3
CO 4	3					3	3					3

Assessment Pattern

Bloom's Category		Continuous Ass Tests	essment	End Semester Examination		
		1.1.5.74	2			
Remember	K1	10	10	20		
Understand	K2	40	40	80		
Apply	K3	202		/		
Analyse	K4	2014				
Evaluate						
Create						

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:	D ELECTRONICS & INSTRUMENTATION
Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Describe the basic principles of physiological systems of human body.

- 1. What is resting potential and action potential? Explain the propagation of action potential in a nerve fibre.
- 2. Explain psychological transducers with necessary diagrams.
- 3. Explain cardiovascular dynamics.

Course Outcome 2 (CO2): Illustrate the design and development of various biomedical instruments.

- 1. Describe the working of ultrasonic diathermy unit.
- 2. What are hearing aids? Explain the principle operation of hearing aids.
- 3. Explain the working of synchronous and asynchronous pace maker with block diagram.

Course Outcome 3 (CO3): Explain the principle of patient monitoring systems and identify safety issues related to biomedical instrumentation.

- 1. What is biotelemetry? How patient monitoring can be realized using bio telemetry?
- 2. Explain the causes of electric shock hazards in hospitals. What are the precautions to minimize electric shock hazards?
- 3. Explain the elements of intensive cardiac unit.

Course Outcome 4 (CO4): Describe the applications of medical imaging techniques in biomedical instrumentation.

- 1. Describe Holter monitoring technique.
- 2. Explain with neat diagram the working of X-ray machine. Describe the

application of X-rays in medical field.

3. Explain computer tomography with a necessary diagrams.

Module 1:

Development of biomedical instrumentation, man instrument system components- block diagram, problems encountered in biomedical measurements. Physiological systems of the body (brief discussion on Heart and cardio vascular system, Anatomy of nervous system, Physiology of respiratory systems).

Sources of bioelectric potentials- resting potential, action potential, bioelectric potentials, electrode theory, bipolar and unipolar electrodes, surface electrodes, physiological transducers. Bio electric potentials example (ECG, EEG, EMG, ERG etc.)

Module 2:

Electro-conduction system of the heart. Electro cardiography – electrodes and leads – Einthoven triangle, ECG machine– block diagram. Measurement of blood pressure – direct and indirect measurement–oscillometric measurement–ultrasonic method, blood flow cardiac output, plethysmography, cardiac arrhythmia, pace makers, defibrillators.

Module 3:

Electroencephalogram-neuronal communication- EEG measurement. Muscle response-Electromyogram (EMG)- Nerve Conduction velocity measurements- Electromyogram Measurements. Respiratory parameters – Spiro meter, pneumograph. Artificial respirator, nerve stimulator, artificial kidney machine, hearing aids, diathermy.

Module 4:

Patient monitoring systems: Intensive cardiac care, bedside and central monitoring systems, patient monitoring through bio-telemetry, implanted transmitters, telemetering multiple information. Sources of electrical hazards and safety techniques

Module 5:

Recent trends: Medical imaging, X-rays, laser applications. Basic principle of computed tomography, magnetic resonance imaging system and nuclear medicine system – radiation therapy. Ultrasonic imaging system - introduction and basic principle, colour doppler systems. Holter monitoring, endoscopy.

Text Books

John. G. Webster, "Medical Instrumentation, Application and Design" John Wiley, New York, 1998

Cromwell, F. J. Weibell and L. A. Pfeiffer, Biomedical Instrumentation Measurements, Pearson education, Delhi, 1990.

Reference Books

Arumugam M. "Biomedical Instrumentation", Anuradha Agencies Publishers, Kumbakonam, 2006.

R. S. Khandpur, Handbook of Biomedical Instrumentation, Tata Mc Graw Hill ",

J. Carr and J. M. Brown, Introduction to Biomedical Equipment Technology, Pearson Education

R Geddes L. A. and Baker L. E., "Principles of Applied Biomedical Instrumentation", 3rd Edition, John Wiley, New York, 1989

Richard Aston, "Principles of Bio-medical Instrumentation and Measurement", Merril Publishing Company, New York, 1990.

No		No. of Lectures
1		
1.1	Development of biomedical instrumentation- need and significance Man instrumentation system-Block diagram. Problems encountered in biomedical measurements.	1
1.2	Brief introduction on physiological systems of the body-Nervous, cardio-vascular and respiratory systems.	2
1.3	Sources of bioelectric potentials- resting potential, action potential	1
1.4	Electrode theory, Nernst equation and various types of electrodes.	1
	Bio electric potentials example (ECG, EEG, EMG, ERG, etc.)	1
2		
2.1	Electro-conduction system of the heart. Electrocardiography, electrodes and leads – Einthoven triangle, ECG machine– block diagram.	3
2.2	Measurement of blood pressure– direct and indirect measurement– oscillometric measurement–ultrasonic method	2
2.2	Blood flow cardiac output, plethysmography, cardiac arrhythmia.	2
2.3	Pace makers, defibrillators.	1
3		
3.1	Electro encephalogram— EEG instrumentation, electrode placement, EEG patterns.	2
3.2	Muscle response– Electromyogram (EMG)– Nerve Conduction velocity measurements	1
3.3	Respiratory parameters – Spiro meter, pneumograph.	2
3.3	Artificial respirators, artificial kidney machine, hearing aids.	2
3.4	Diathermy-Types	1
4		
4.1	Patient monitoring systems: Intensive cardiac care, bedside and central monitoring systems.	2
4.2	Patient monitoring through bio-telemetry, implanted transmitters, telemetering multiple information.	2
4.3	Sources of electrical hazards and safety techniques	1

5	APPLIED ELECTRONICS & INSTRU	JWENTATE
5.1	X-rays, laser applications	1
5.2	Basic principle of computed tomography.	1
5.3	Magnetic resonance imaging system and nuclear medicine system	2
5.4	Ultrasonic imaging system - introduction and basic principle	2
5.5	Colour doppler systems, Holter monitoring, Endoscopy.	2

Model Question paper

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION, (Model Question Paper)

Course Code: AET342

Program: Applied Electronics and Instrumentation Engineering

Course Name: Biomedical Instrumentation

Max. Marks: 100

Duration: 3 Hours

PART A

Answer ALL Questions. Each Carries 3 mark.

1	Draw the block diagram of man instrument system and explain various	CO2	K1
	components present in it.		
2	What are the major problems encountered while measuring a biological	CO1	K2
	variable from an instrument.		
3	Explain the electrical conduction system of the heart.	CO1	K2
4	Write notes on plethysmography.	CO2	K1
5	Discuss on various EEG patterns.	CO2	K2
6	Explain the working principle of spirometer.	CO2	K2
7	Explain different methods of electric accident prevention.	CO3	K2
8	Identify the situation to use diathermy? Mention its applications?	CO3	K2
9	With the help of a block diagram explain the basic principle of Computer	CO4	K2
	tomography.		
10	Explain the biomedical applications of X-Ray	CO4	K2

$\mathsf{APPL}_{PART} = \mathsf{B}^{\mathsf{TRONICS}} \& \mathsf{INSTRUMENTATION}$

Answer one question from each module; each question carries 14 marks.

	Module – I			
11. a)	Write a short note on Resting potential, Action potential and Propagation of Action potential with Action potential waveform	9	CO1	K2
11. b)	Enumerate various skin surface electrodes. Write principle of operation of any THREE electrodes	5	CO1	K2
		1		
12.a)	Explain equivalent circuit of bio-potential electrode interface.	7	CO1	K2
12.b)	Identify the various types of transducers used in Biomedical engineering? Write principle of operation of any 5 transducers.	7	CO1	K2
L	Module – II			

	And a second			
13 a)	What is cardiac vector? Explain ECG leads with necessary figures.	9	CO2	K2
13	What is plethysmography? Explain impedance plethysmograph with	5	CO2	K1
b)	necessary diagram			
	OR			
14 a)	With help of neat diagram write how the oscillometric method helps	9	CO2	K2
	to measure Blood Pressure.			
14	Describe the working of electronic pacemaker with necessary	5	CO2	K1
b)	diagram.			

Module – III

15 a)	With neat diagram write how we can measure velocity of conduction in nerve.	5	CO2	K2
15 b)	What are hearing aids? Differentiate between conventional and digital type of hearing aids with suitable sketches?:-	9	CO2	K2
	OR			
16 a)	Write a short note on tidal volume and vital capacity in breathing mechanism with neat diagram.	7	CO2	K2
16 b)	What is an artificial kidney machine? Explain any one method of dialysis with suitable sketches	7	CO2	K2

17 a)	Describe the bedside monitoring system with a suitable block diagram.	9	CO3	K2
17 b)	What is diathermy? Explain any one type of diathermy unit.	5	CO3	K2
	OR			
18 a)	Discuss on single channel telemetry system with a suitable block diagram.	9	CO3	K2
18 b)	Explain the physiological effects of electric current, specifying important susceptibility parameters with necessary figures	5	CO3	K2
L	Module – V		1	1

Module – IV

19 a)	With neat diagram explain the working of X-ray machine.	10	CO4	K2
	Enumerate the uses of X-rays in medicine:			
19	Explain the principle of operation of endoscopy	4	CO4	K2
b)				
	OR			
20 a)	Explain the principle of operation of Holter monitoring.	7	CO4	K2
20	With a block diagram, explain the comp <mark>o</mark> nents of an NMR system	7	CO4	K2
b)				

AET352	REAL TIME OPERATING	CATEGORY	L	Τ	Р	CREDITS
	SYSTEMS	PEC	2	1	0	3

Preamble: This course aims to impart the basics of operating systems tasks and basic OS architectures and develop these to RTOS.

Prerequisite: AET305 Computer Architecture and Embedded Systems

Course Outcomes: After the completion of the course the student will be able to

CO1	Summarize the basics of operating systems tasks and basic OS architectures.							
CO2	Explain the concepts of different task scheduling schemes.							
CO3	Identify the problems and issues related with multitasking.							
CO4	Interpret the strategies in interfacing the memory.							
CO5	Illustrate various I/O Management and Disk Scheduling algorithms.							
CO6	Apply software development to embedded computer systems using RTOS.							

Mapping of course outcomes with program outcomes

	PO	PO	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	РО
	1	2								10	11	12
CO 1	3											3
CO 2	3	2		Y								3
CO 3	3	2	2				2		1			3
CO 4	3											3
CO 5	3	2					2					3
CO 6	3	2	2		2	2	2	3				3

Assessment Pattern

Bloom's Cate	egory	Continuous A Tests	ssessment	End Semester Examination
		1201	2	
Remember	K1	15	15	30
Understand	K2	25	25	50
Apply	К3	10	10	20
Analyse	K4			
Evaluate				
Create				

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	: 10marks
Continuous Assessment Test (2numbers)	: 25 marks
Assignment/Quiz/Course project	: 15marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Summarize the basics of operating systems and basic OS architectures.

- 1. What are the two main functions of operating systems? Briefly explain each function.
- 2. What are the differences between monolithic and microkernel architectures of OS?
- 3. What is the advantage of Microkernel OS?
- 4. Explain different types of OS architectures.

Course Outcome 2 (CO2): Explain the concepts of different task scheduling schemes.

- 1. Discuss the problems associated with multiprocessor scheduling. How they can be solved?
- 2. Compare FCFS and Round Robin Scheduling algorithms..
- 3. Explain Priority Scheduling algorithm.
- 4. Explain Scheduling algorithms.

Course Outcome 3 (CO3): Summarize the problems and issues related with multitasking.

- 1. Describe the principles of Deadlock.
- 2. With proper code write in detail about producer-consumer problem and suggest a suitable solution.
- 3. State and explain the dining philosopher problem.
- 4. What conditions are generally associated with the reader/writers problem?.

Course Outcome 4 (CO4): Describe the strategies to interface memory.

- 1. Using a suitable example, illustrate dynamic partitioning.
- 2. What are the design issues in OS?
- 3. Explain the I/O management.
- 4. Discuss the fixed and dynamic memory partitioning techniques.

Course Outcome 5 (CO5): Explain to develop software for embedded computer systems using a real-time operating systems.

- 1. Compare Vxworks and μCOS
- 2. Explain the interprocess communication techniques supported vy VxWorks.
- 3. Describe the architecture of μ COS.
- 4. Design a RTOS control system for an avionics system.

SYLLABUS

MODULE I

Introduction to RTOS: Concept-Operating system objectives and functions-Comparison of RTOS and General Purpose Operating Systems.

RTOS Architectures: (Monolithic, Microkernel, Layered, Exo-kernel and Hybrid kernel structures)

Task- Defining a Task, Task States and Scheduling

MODULE II

Uniprocessor Scheduling: Types of scheduling algorithms: FCFS, SJF, Priority, Round Robin Multi-level feedback queue scheduling, Multiprocessor Scheduling concept

MODULE III

Concurrency: Principles of Concurrency, Mutual Exclusion H/W Support, software approaches, Semaphores and Mutex, Message Passing techniques.

Classical Problems of Synchronization: Readers-Writers Problem, Dining Philosopher problem. Deadlock.

MODULE IV

Memory Management requirements, Memory partitioning: Fixed, dynamic, partitioning Memory allocation Strategies (First Fit, Best Fit, Worst Fit, Next Fit), Paging, Demand paging Page Replacement Policies, I/O Management and Disk Scheduling, Operating System Design issues, I/O Buffering.

MODULE V

Comparison and study of RTOS: Vxworks and µCOS, Case studies: RTOS for embedded Systems.

Text Books

- 1. C.M. Krishna and G.Shin, Real Time Systems, McGraw-Hill International Edition, 1997.
- 2. Jean J Labrosse, Embedded Systems Building Blocks Complete and Ready-touse Modules in C, CMP books, 2/e, 1999

Reference Books

1. Philip A Laplante, "Real-Time Systems Design and Analysis: An Engineer's Handbook", 4 th Edition, Wiley

- 2. BorkoFurht, Dan Grostick, David Gluch, Guy Rabbat, John Parker, Meg McRoberts, "Real-Time UNIX® Systems: Design and Application Guide" Springer, 2012
- 3. Jean J Labrosse, Micro C/OS-II, The Real Time Kernel, CMP Books, 2011
- 4. Sam Siewert, V, Real-Time Embedded Components and Systems: With Linux and RTOS (Engineering), 2015

course	ADI ARDI IL KALAM				
No.	TECHNOLOGICAL	No. of lecture hours			
1	Introduction to RTOS				
1.1	Concept-Operating system objectives and functions	1			
1.2	Comparison of RTOS and General Purpose Operating Systems	1			
1.3	RTOS Architectures : (Monolithic, Microkernel, Layered, Exo-kernel and Hybrid kernel structures)	2			
1.4	Task-Defining a Task, Task States and Scheduling.	2			
2	Scheduling				
2.1	Uniprocessor Scheduling: Types of scheduling	2			
2.2	Scheduling algorithms: FCFS, SJF, Priority, Round Robin	2			
2.2	Multi-level feedback queue scheduling, Multiprocessor Scheduling concept	3			
3	Multitasking				
3.1	Concurrency: Principles of Concurrency, software approaches, Semaphores and Mutex, Message Passing techniques.	4			
3.2	Classical Problems of Synchronization: Readers-Writers Problem, Dining Philosopher problem. Deadlock	3			
4	Memory Management				
4.1	Memory Management requirements, Memory partitioning: Fixed, dynamic, partitioning	2			
4.2	Memory allocation Strategies (First Fit, Best Fit, Worst Fit,Next Fit), Paging, Demand paging, Page Replacement Policies	3			
4.3	I/O Management and Disk Scheduling, Operating System Design issues, I/O Buffering.	3			
5	Case studies				
5.1	Comparison and study of RTOS: Vxworks and µCOS	3			
5.2	Case studies: RTOS for embedded Systems	4			

Course Contents and Lecture Schedule

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION, (Model Question Paper)

Course Code: AET 352

Program: Applied Electronics and Instrumentation Engineering

Course Name: Real Time Operating Systems

Max. Marks: 100 Hours Duration: 3

PART A

Answer ALL Questions. Each carries 3 marks.

1.	Differentiate Pre-emptive and Non Pre-emptive Scheduling schemes. Give		K2
	examples.		
2.	Explain the monolithic and layered architecture of operating systems.		K2
3.	Explain the concept of multi-level feedback queue scheduling.	CO2	K2
4.	Discuss the problems associated with multiprocessor scheduling. How they	CO2	K3
	can be solved?		
5.	Describe the principles of Deadlock.	CO3	K1
6.	State and explain the dining philosopher problem.	CO3	K2
7.	Explain disk management in OS	CO4	K2
8.	Using a suitable example, illustrate dynamic partitioning.	CO4	K2
9.	Compare Vxworks and µCOS	CO5	K2
10.	Explain the interprocess communication techniques	CO5	K2

PART – B

Answer one question from each module; each question carries 14 marks.

Module – I

11.	Explain the operating system functions and services in detail.	14	CO1	K2
OR				
12	Explain different types of OS architectures and Mention the	14	CO1	K2
	advantage of Microkernel OS?			

Module – II

13.	Describe the virtual machine structure of operating system design.	14	CO2	K2
	OR			
14.	Explain and Compare FCFS and Round Robin Scheduling	14	CO2	K2
	algorithms.			
A Module – HIF CTRONICS & INSTRUMENTATION

15 a)	Discuss the different methods of preventing deadlock.	10	CO3	K1
15 b)	What conditions are generally associated with the	4	CO3	K2
	reader/writers problem?			
	OR			
16 a)	State and explain the Dining Philosopher problem. Give a suitable	14	CO3	K3
	solution (with code) to the problem using semaphore.			

	AP AB Module – IV	Ŵ	1	
17 a)	Explain the basic concepts of demand paging.	6	CO4	K2
17 b)	Give a detailed description about the different I/O buffering schemes.	8	CO4	K1
	OR			
18	Write in detail about any three disk scheduling algorithms.	14	CO4	K2

Module – V

19	Explain the various inter-process communication techniques	14	CO5	K2
	supported by VxWorks and MicroC/OS.			
	OR			
20	Using a block diagram explain how a real time system is	14	CO5	K3
	implemented. Describe a real life example of an RTOS control			
	system			

A ET267	OPTOELECTRONIC DEVICES	CATEGORY	L	Τ	Р	CREDITS
AE 1302		PEC	2	1	0	3

Preamble: This course aims to understand various photonic materials and devices.

Prerequisite: ECT201 Solid State devices

Course Outcomes: After the completion of the course the student will be able to

CO 1	Explain the physics of absorption, recombination and photoemission from semiconductors.	K2
CO 2	Discuss different LED structures with material properties.	K2
CO 3	Explain different types of lasers with distinct properties.	K2
CO4	Analyze different types of photo detectors based on their performance parameters	К3
CO5	Explain optical modulators and optical components.	K2

Mapping of course outcomes with program outcomes

	PO	PO	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO
	1	2								10	11	12
CO 1	3	3										2
CO 2	3	3			2							2
CO 3	3	3			2							2
CO 4	3	3			2							2
CO 5	3	3					1					2

Assessment Pattern

Bloom's Category		Continuous As Tests	sessment	End Semester Examination
		1 - 8	2	
Remember	K1	10	10	10
Understand	K2	30	30	60
Apply	K3	10	10	30
Analyse	K4	201		
Evaluate	K5			
Create	K6			

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Explain the physics of absorption, recombination and photoemission from semiconductors.

- 1. Briefly explain radiative and non radiative recombination in semiconductors.
- 2. Describe the absorption in Quantum wells and the Quantum Confined Stark effect.
- 3. What is Auger Recombination? Derive the equation for absorption coefficient of a semiconductor

Course Outcome 2 (CO2): Discuss different LED structures with material properties.

- 1. What is quantum efficiency and reponsivity of LED?
- 2. Explain the construction, principle of operation, of a hetero junction LED.
- 3. What is meant by Lambartian source?

Course Outcome 3 (CO3): Explain different types of lasers with distinct properties.

- 1. Explain the principle of operation of FP laser.
- 2. Explain the characteristics of a semiconductor laser.
- 3. Explain the construction of VCSEL laser.

Course Outcome 4 (CO4): Analyze different types of photo detectors based on their performance parameters.

- 1. Explain the construction and operation of PIN diode and APD.
- 2. Discuss the term responsivity with respect to a photo detector.

Course Outcome 5 (CO5): Explain optical modulators and optical components

- 1. Discuss the principle of operation of different electro-optic modulators
- 2. With suitable diagrams discuss an AWG, FBG and other optical components

SYLLABUS

Module 1:

Optical processes in semiconductors – electron hole recombination, absorption, Franz-Keldysh effect, Stark effect, quantum confined Stark effect, deep level transitions, Auger recombination.

Module 2:

Light-Emitting Diodes: Surface-emitting and edge-emitting LEDs, heterostructure, Lambertian

source InGaN/GaN LED, structure and working, performance parameters, White-light LEDs, generation of white light with LEDs, generation of white light by dichromatic sources, and trichromatic sources, white-light sources based on wavelength converters.

Module 3:

Lasers – threshold condition for lasing, line broadening mechanisms, axial and transverse laser modes, heterojunction lasers, distributed feedback lasers, quantum well lasers, Vertical-Cavity Surface-Emitting Lasers, Tuneable Semiconductor Lasers, modulation of lasers, nitride light emitters.

Module 4 :

Optical detection – PIN, APD, modulated barrier photodiode, Schottky barrier photodiode, wavelength selective detection, micro cavity photodiodes.

Optical modulators using pn junction, electro-optical modulators, acousto-optical modulators, Raman-Nath modulators.

Module 5:

OIC and Optical Components: Optoelectronic ICs, advantages, integrated transmitters and receivers, guided wave devices. Introduction to optical components, directional couplers, multiplexers, AWG, attenuators, isolators, circulators, tunable filters, fixed filters, add drop multiplexers, optical cross connects, wavelength convertors,

Text Books

- 1. Pallab Bhattacharya: *Semiconductor Optoelectronic Devices*, 2/e; Pearson Education, 2002.
- 2. Yariv, *Photonics Optical Electronics in Modern Communication*, 6/e, Oxford Univ Press, 2006.

Reference Books

- 1. S.C Gupta: Optoelectronic Devices and Systems, PHI,2008
- 2. Khare, Fiber optics and Optoelectronics, Oxford University press, 2006

- 3. Saleh and Teich, Fundamentals Of Photonics, Wiley interscience, 2007
- 4. Simmon and Potter, Optical materials, Elsevier, 2006

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures
1	Optical processes in semiconductors	
1.1	Electron hole recombination.	1
1.2	Direct and Indirect band gap semiconductors	1
1.3	Absorption,	1
1.4	Franz-Keldysh effect	1
1.5	Stark effect, quantum confined Stark effect	2
1.6	Deep level transitions, Auger recombination	1
2	Light-Emitting Diodes	
2.1	Surface-emitting and edge-emitting LEDs, Lambertian source	2
2.2	Heterostructure, InGaN/GaN LED, structure and working, performance parameters	2
2.3	White-light LEDs, generation of white light with LEDs,	1
2.4	Generation of white light by dichromatic sources, and trichromatic sources,	1
2.5	White-light sources based on wavelength converters.	1
3	Lasers	
3.1	Threshold condition for lasing, line broadening mechanisms	1
3.2	Axial and transverse laser modes	1
3.3	Heterojunction lasers, distributed feedback lasers,	1
3.4	Quantum well lasers, Vertical-Cavity Surface-Emitting Lasers,	2
3.5	Tuneable Semiconductor Lasers	1
3.6	Modulation of lasers	1
3.7	Nitride light emitters	1
4	Optical detection	
4.1	PIN, APD, modulated barrier photodiode, Schottky barrier photodiode	2
4.2	Wavelength selective detection, micro cavity photodiodes.	2
4.3	Optical modulators using pn junction, electro-optical modulators	1
4.4	Acousto-optical modulators, Raman-Nath modulators	2
5	Optoelectronic ICs and optical components	
5.1	Optoelectronic ICs ,integrated transmitters and receivers Advantages	2
5.2	Guided wave devices, directional couplers	1
5.3	Multiplexers, AWG, attenuators, isolators, circulators, add drop multiplexers	2
5.4	Tunable filters, fixed filters, optical cross connects, wavelength convertors	2

Assignment:

At least one assignment should be simulation of optical components or devices on Matlab or any optical simulation software.

Model Question paper

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION

Course Code: AET362

Program: Applied Electronics and Instrumentation Engineering/ Electronics & Instrumentation Engineering

Course Name: Optoelectronic Devices

Max. Marks: 100

Duration: 3 Hours

PART A

Answer ALL Questions. Each Carries 3 mark.

1.	Differentiate between photons and phonons.	К3	
2	What is a lambartian source?	K2	
3	Calculate momentum change due to phonon absorption in InP having band gap energy of 1.35eV.	K2	
4	Explain the working of White LED.	K2	
5	What is meant by characteristic temperature of LASER?	K3	
6	Explain Quantum wells in semiconductor energy bands. How they are formed?	K2	
7	Explain the term responsivity of a photo detector.	K3	
8	Explain the working principle of electro absorption modulator.	K3	
9	What are the features of Optical ICs?	K2	
10	Explain the construction of Tunable optical filters.	K2	

PART – B

Answer one question from each module; each question carries 14 marks. Module - I

11. a)	With the help of energy band diagrams explain direct and indirect 10	CO1	K3
	band gap semiconductors and also describe the process of		

	radiative recombination.			
11. b)	The band gap energy GaAs is 1.43eV. Find the peak emission wave length	4	CO1	К3
	OR			
12.a)	Describe the Absorption in Quantum wells and the Quantum Confined Stark effect.	5	CO1	К3
12.b)	Consider a PN junction Semiconductor sample. At equilibrium the acceptor concentration at P type region is $N_A=10^{16}$ cm ⁻³ and that of in N region the donor concentration $N_D=5x10^{15}$ cm ⁻³ . At a particular temperature the hole concentration in P region is determined to be $1.1x10^{16}$ cm ⁻³ . Find the intrinsic concentration n_i for the semi conductor at this temperature. Find the equilibrium electron concentration n in the N region at this temperature.	9	CO2	K3
	Module – II			
13.a)	With necessary diagrams explain the construction and operation of an edge emitting LED.	7	CO2	K2
13.b)	A hetrojunction LED emitting at peak wavelength of 850 nm has radiative and non radiative recombination times of 25ns and 90ns respectively. If the drive current is 35mA find the internal quantum efficiency and internal power level.	7	CO2	К3
	OR			
14.a)	Explain the design features of white-light LED. Describe how white light is obtained from trichromatic sources.	10	CO2	K2
b)	Explain the application of wave length converters in white light generation.	4	CO2	K2
	Module – III			
15.a)	Explain the lasing action in semiconductor lasers. Discuss the light output against current characteristics.	7	CO3	K2
15.b)	Calculate the mirror reflectiveness needed in GaAs-AlGaAs double hetro structure laser in which the FP cavity length is 20mico meter and the cavity loss is 10 cm ⁻¹ . The optical confinement factor is unity and the threshold gain in the medium is 10^3 cm. ⁻¹	7	CO3	K3
	OR			
16.a)	With the aid of suitable diagrams, discuss the principles of operation of VCSEL laser.	9	CO3	K2
16.b)	Briefly explain about nitride light emitters.	5	CO3	K2
	Module – IV			

17.a)	Draw the layer diagram and explain the operation of a p-i-n diode.	8	CO4	K2
b)	An APD has a quantum efficiency of 40% at 1300nm. When illuminated with optical power of 0.3W, it produces an output current of $6\mu A$, after avalanche gain. Calculate the multiplication factor of the diode.	6	CO4	K3
	OR			
18.a)	With suitable diagrams explain the structure of a Mach-Zhender modulator. Also describe how an applied electric field affects the optical signal.	9	CO5	K2
b)	Explain the operation of Raman-Nath modulators	5	CO5	K2
	Module – V			
19.a)	With a schematic explain the working of Array waveguide grating (AWG)	7	CO5	K3
	Design an add drop multiplexer using circulator and FBG.	7	CO5	K3
	OR			
20.a)	With necessary figures explain integrated optical transmitter and receiver.	8	CO5	K2
20.b)	Write short notes on (i) Optical Cross Connects (ii) wavelength Converters.	6	CO5	K2

A FT277	INTERNET OF THINGS	GS CATEGORY L T P CRE	CREDITS			
ALIJ/2	INTERNET OF THINGS	PEC	2	1	0	3

Preamble: This course aims to develop an understanding on IOT

Prerequisite: NIL

Course Outcomes: After the completion of the course the student will be able to

CO 1	Explain in a concise manner the architecture of IOT	K2
CO 2	Identify various hardware components used in IOT	K3
CO 3	Discuss the various connectivity technologies and interfaces in IOT	K2
CO4	Compare and appreciate the usage of modern technologies like cloud computing for data management in IOT	K2
CO5	Illustrate application of IOT with typical case studies in various fields and protocols	K3

Mapping of course outcomes with program outcomes

	PO	PO	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO
	1	2		11						10	11	12
CO 1	2											
CO 2	3	2	2									
CO 3	2											
CO 4	2				2							
CO 5	3	2	2									

Assessment Pattern

Bloom's Category		Continuous As Tests	sessment	End Semester Examination
		1	2	
Remember	K1	10	10	20
Understand	K2	30	30	60
Apply	K3	10	10	20
Analyse	K4	201		
Evaluate				
Create				

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

COURSE LEVEL ASSESSMENT QUESTIONS

COURSE OUTCOME 1 (CO1): Explain in a concise manner the architecture of IOT

- 1. With a diagram, explain the function overview of IOT
- 2. Explain how embedded systems are a part of IOT
- 3. Illustrate with a neat block diagram, middle ware based architecture
- 4. List the 7 design principles of IOT

COURSE OUTCOME 2 (CO2): Identify various hardware components used in IOT

- 1. List few prototyping boards used for IOT design
- 2. A network connected mobile robot is to be designed as a part of home automation system. Choose any one sensor and its working principle, that will prevent the robot from colliding with other objects at home.
- 3. Illustrate with neat sketches, the working of stepper motor to get accurate positioning
- 4. With the help of conceptual diagrams, explain any 3 wireless sensor network topologies

COURSE OUTCOME 3 (CO3): Discuss the various connectivity technologies and interfaces in IOT

- 1. How does RFID help in connecting various devices in IOT.
- 2. Explain in detail about CAN.
- 3. Compare and contrast Bluetooth and Zigbee.
- 4. How are various IOT devices uniquely identified in a network? Explain in detail.

COURSE OUTCOME 4 (CO4) : Compare and appreciate the usage of modern technologies like cloud computing for data management in IOT

- 1. Elaborate on the flash memory
- 2. List the advantages of cloud computing
- 3. Explain any one method used to analyse the data acquired by IOT
- 4. How is data management made possible in IOT

COURSE OUTCOME 5 (CO5): Illustrate application of IOT with typical case studies in various fields and protocols

- 1. Explain your idea on how IOT can help in water management/ supply systems in smart cities
- 2. What technological method could you suggest to a farmer so that he can monitor his live stock round the clock, where ever he is in his farm?
- 3. With a neat block diagram, explain fog computing enabled IOT system
- 4. Give a detailed overview on MQTT and CoAP

SYLLABUS

Module 1:

Introduction: Definition, basic IOT block diagram, Characteristics of IoT devices – power, computational constraints, IoT Architectural view – Middle ware based architecture, Service oriented architecture, M2M Communication and IOT, Typical application areas of IoT, Functional overview, Design principles of IOT

Module 2:

IOT hardware: Embedded hardware: Embedded platforms for prototyping- Arduino, ESP32, RaspberryPi (*only overview*), typical CPU's and GPU's used in IoT boards Sensor technologies (*only operating principles required of each*) - humidity sensor (DHT11/22), Gas Sensor (MQ series), Ultrasonic distance sensor (HC-SR04), temperature sensors Sensor data communication, Wireless Sensor network Topologies Actuators – (*working principles only*) Relays, DC motors, stepper motor, Solenoids.

Module 3:

IOT Communication and Connectivity: IOT device gateways, IP addressing in the IoT, Electronic Product Codes, RFID, ubiquitous code

Communication Technologies for IoT – Zigbee, Bluetooth, BLE, Wifi, LTE, LoRa, 6LoWPAN (detailed protocol stack not required)

Overview of I/O interfaces - UART, SPI, I2C, CAN

Module 4 :

IOT Data Management: Organization of Data, Big data, Acquiring methods, management techniques, Analytics, Storage technologies – Volatile. Non-volatile, Embedded (MTP/OTP), external flash (NAND/NOR), DRAM, eflash, UFS, eMMC.

Cloud computing and IOT- architecture, advantages of cloud computing, Software as a Service (SaaS), Platform as a Service (PaaS), Infrastructure as a Service (IaaS).

Module 5:

Internet of Things SMART Applications and protocols:

Applications :- Energy management and Smart grid, IoT for Home (home automation), Cities (lighting, water supply, parking), Environment monitoring(pollution control), Agriculture (live

stock monitoring, precision farming for irrigation, pesticide spraying), Supply chain and customer monitoring, Industrial IoT and Automotive IoT, Fog Computing

Protocols:- (fundamental concepts only) - Message Queue Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), Extensible Messaging and Presence Protocol (XMPP)

Text Books

- Rajkamal, "Internet of Things : Architecture and Design Principles", McGraw Hill (India) Private Limited.
- Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on- Approach)", 1st Edition, VPT, 2014

Reference Books

- The Internet of Things (The MIT Press Essential Knowledge series) Paperback March 20, 2015 by Samuel Greengard
- 2. The Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems, Ovidu Vermesan and Peter Friess, River Publishers.
- 3. Internet of Things From Research and Innovation to Market Deployment -RIVER PUBLISHERS, PETER FRIESS, OVIDIU VERMESAN (Editors)
- 4. Al-Fuqaha et al. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials (2015), pp. 2347-2376.

Course Contents and Lecture Schedule APPLIED ELECTRONICS & INSTRUMENTATION

No	Торіс	No. of Lectures
1	Introduction to IOT	7
1.1	Definition, basic IOT block diagram, Characteristics of IoT devices – power, computational constraints	1
1.2	IoT Architectural view – Middle ware based architecture, Service oriented architecture,	2
1.3	IoT Technology, M2M Communication and IOT, Typical application areas of IoT	3
1.4	Functional overview, design principles of IOT	1
2	IOT hardware:	7
2.1	Embedded platforms for prototyping- Arduino, ESP32, RaspberryPi	2
	(only overview), typical CPU's and GPU's used in IoT boards	
2.2	Sensor technologies (only operating principles required of each) -	3
	humidity sensor (DHT11/22) Gas Sensor (MO series) Ultrasonic	
	indiffutty sensor (Diff 11/22), Gas Sensor (WiQ series), Ontasonic	
	distance sensor (HC-SR04), temperature sensors, Sensor data is	
	communication, Wireless Sensor network Topologies	
2.3	Actuators -(working principles only) Relays, DC motors, stepper	2
	motor. Solenoids	
3	IOT Communication and Connectivity:	7
3.1	IOT device gateways, IP addressing in the IoT, Electronic Product	2
	Codes, RFID, ubiquitous code	
3.2	Communication Technologies for IoT – Zigbee, Bluetooth, BLE,	3
	Wifi, LTE, LoRa, 6LoWPAN(detailed protocol stack not required)	
3.3	Overview of I/O interfaces - UART, SPI, I2C, CAN	2
4	IOT Data Management:	7
4.1	Organization of Data, Big data, Acquiring methods, management techniques, Analytics	2
4.2	Storage technologies – Volatile. Non-volatile, Embedded	2
	(MTP/OTP), external flash (NAND/NOR), DRAM, eflash, UFS,	
	eMMC.	
4.3	Cloud computing and IOT- architecture, advantages of cloud	2
	computing	
4.4	Software as a Service (SaaS), Platform as a Service (PaaS),	1
	Infrastructure as a Service (IaaS).	
5	Internet of Things SMART Applications and protocols:	7
5.1	Energy management and Smart grid	1
5.2	IoT for Home (home automation), Cities (lighting, water supply,	3

	parking), Environment monitoring, pollution control), Agriculture	
	(live stock monitoring, precision farming for irrigation, pesticide	
	spraying), Supply chain and customer monitoring	
5.3	Industrial IoT and Automotive IoT, Fog Computing	1
5.4	Protocols:- (fundamental concepts only) - Message Queue	2
	Telemetry Transport (MQTT), Constrained Application Protocol	
	(CoAP), Extensible Messaging and Presence Protocol (XMPP)	

Model Question paper

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION

Course Code: AET372

Program: Applied Electronics and Instrumentation Engineering/ Electronics & Instrumentation Engineering

Course Name: Internet of Things

Max. Marks: 100

Duration: 3 Hours

PART A

Answer ALL Questions. Each Carries 3 mark.

Q.	Question	K	CO
No	Easted	level	
1	Cite few application areas of IOT	2	CO1
2	What is M2M communication	1	CO1
3	Define the term actuator? Give an example.	1	CO2
4	Briefly explain any one sensor for measuring temperature	2	CO2
5	Write short note on Bluetooth technology	1	CO3
6	Define Gateway	1	CO3
7	Elaborate on the term big data?	2	CO4
8	Differentiate Saas, PaaS and IaaS	2	CO4
9	Mention various IOT enabled services in smart cities	2	CO5
10	Describe how customers who carry internet connected devices can be tracked	2	CO5

PART – B

Answer one question from each module; each question carries 14 marks.

	MODULE - 1						
11 (a)	Describe the typical characteristics of IOT devices	8	CO1	K2			
11(b)	In detail, describe the constraints while designing an IOT	6	CO1	K2			
	system						
	A P A R OR K A	AN					
12 (a)	With necessary diagrams, describe in detail any 2 architectures of IOT	14	CO1	K2			
	I IN IN / DOUTS	7					

	MODULE - 2			
13(a)	An IOT based home is to be designed with gas leak detection	8	CO2	K3
	system. Choose a suitable sensor for the same and explain			
	about its working principle			
13(b)	Name any GPU. Explain its typical features	6	CO2	K1
	OR			
14 (a)	Choose a sensor that would help in detecting moisture	8	CO2	K3
	content in a go down storage facility for vegetables. Explain			
	its working principle.			
14 (b)	List few features of Arduino boards used for prototyping	6	CO2	K1

	MODULE - 3							
15(a)	Write short notes on (i) RFID (ii) ubiquitous code	8	CO3	K2				
15(b)	Compare and contrast LoRa and 6LoWPAN	6	CO3	K2				
	OR							
16 (a)	Give a detailed explanation of I2C. Use necessary diagrams	8	CO3	K2				
16 (b)	Differentiate IPv4 from IPv6	6	CO3	K2				

MODULE - 4								
17(a)	How can we manage large data from various sensors	8	CO4	K2				
17(b)	How does cloud computing help in data storage	6	CO4	K2				
	OR							
18 (a)	Explain about the tools that can be used for data analysis	8	CO4	K2				
18 (b)	Write short note on UFS	6	CO4	K2				

MODULE - 5							
19 (a)	A smart city is to be designed with smart parking facility.	8	CO5	K3			
	Describe the features necessary for the same.						
19 (b)	How pollution monitoring can be done with IOT in the	6	CO5	K3			

	premises of industries			
	OR			
20 (a)	List few facilities that can be incorporated into a smart home with IOT	6	CO5	K3
20 (b)	Describe how an ordinary irrigation system for agricultural purposes can be made efficient with the help of IOT	8	CO5	K3

AET382	SOFT COMPUTING	CATEGORY	L	Т	Р	CREDITS
		VAC	3	1	0	4

Preamble: This course aims to introduce the concepts of Soft Computing that include Statistical learning models, Artificial Neural Networks, Support Vector Machines, Fuzzy logic based systems, Genetic Algorithm-based systems and their hybrids.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

CO 1	Define and explain soft computing techniques and their applications.
CO 2	Analyze various neural network architectures and Support Vector Machine.
CO 3	Define the fuzzy systems and explain the concepts of genetic algorithm.
CO4	Identify and select a suitable Soft Computing technique to solve the real world problems.

Mapping of course outcomes with program outcomes

	PO	PO	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO
	1	2		11						10	11	12
CO 1	3	3		2								2
CO 2	3	3			2							2
CO 3	2	2			2				3	3		2
CO 4					2				3	3		2

Assessment Pattern

Bloom's Cat	egory	Continuou /Tests	s Assessment	End Semester Examination
		1	2	
Remember	K1	10	10	20
Understand	K2	25	25	50
Apply	K3	15	15	30
Analyze	K4		2014	
Evaluate				
Create				

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Define and explain soft computing techniques and their applications.

1. Explain the basic terminologies in soft computing and categorize different learning approaches.

- 2. Compare and contrast between human learning and machine learning.
- 3. Explain the principles of statistical learning methods

Course Outcome 2 (CO2): Analyze various neural network architectures and Support Vector Machine.

- 1. Explain the basic principles and terminologies in Artificial Neural Networks.
- 2. Explain the working principles of perceptron- understand the perceptron learning algorithm.
- 3. Explain the theory behind maximum margin based classifiers.
- 4. Explain the use of SVM based classifiers for multi-class classifications

Course Outcome 3 (CO3): Define the fuzzy systems and explain concepts of the Genetic Algorithm.

- 1. Explain the basic principles and properties of Fuzzy logic and fuzzy sets.
- 2. Outline the operations on fuzzy relations, Fuzzy membership functions and fuzzification.
- 3. Explain the concepts of defuzzification methods.

Course Outcome 4 (CO4): Identify and select a suitable Soft Computing technique to solve the real world problems.

- 1. Generate synthetic and toy datasets such as linearly separable, non linearly separable and overlapping datasets.
 - 2. Design and implement Bayesian classifiers for different cases of covariance matrices
- 3. Implement ANNs and SVMs using suitable software tools.

SYLLABUS

Module 1:

Introduction to Soft Computing: Artificial neural networks - biological neurons, Basic models of artificial neural networks – McCulloch and Pitts Neuron, Perceptron networks Learning rule – Training and testing algorithm, Activation Functions – Multi-layer perceptrons, Back propagation Network – Architecture, Learning algorithm

Module 2:

Statistical Learning Models: Bayesian decision theory- Bayes classifier, Decision regions, significance of covariance matrix. Introduction to GMM. Support vector machines- introduction-concept of maximum margin- Multi-class classifiers using SVM

Module 3:

Fuzzy Systems: Fuzzy logic - fuzzy sets - properties - operations on fuzzy sets, fuzzy relations - operations on fuzzy relations, Fuzzy membership functions, fuzzification, Methods of membership value assignments – intuition – inference – rank ordering, Lambda –cuts for fuzzy sets, Defuzzification methods- Truth values and Tables in Fuzzy Logic, Fuzzy propositions, Formation of fuzzy rules - Decomposition of rules –Aggregation of rules, Fuzzy Inference Systems – Mamdani and Sugeno types, Neuro-fuzzy hybrid systems –characteristics – classification

Module 4 :

Genetic Algorithm: Introduction to genetic algorithm, operators in genetic algorithm - coding - selection - cross over – mutation, Stopping condition for genetic algorithm flow, Genetic neuro hybrid systems, Genetic-Fuzzy rule based system

Module 5:

Design and Implementation of Simple Soft Computing Systems: Study of synthetic datasetslinearly separable- non linearly separable -overlapping types. Implementation of perceptrons-Bayes classifiers- ANNs and SVMs using software tools.

Text Books

1. S. N. Sivanandam and S. N.Deepa, Principles of soft computing – John Wiley & Sons, 2007.

2. Timothy J. Ross, Fuzzy Logic with engineering applications , John Wiley & Sons, 2016.

Reference Books

1. N. K. Sinha and M. M. Gupta, Soft Computing & Intelligent Systems: Theory &

Applications-Academic Press /Elsevier. 2009.

2. Simon Haykin, Neural Network- A Comprehensive Foundation- Prentice Hall International, Inc.

3. R. Eberhart and Y. Shi, Computational Intelligence: Concepts to Implementation, Morgan Kaufman/Elsevier, 2007.

4. Ross T.J., Fuzzy Logic with Engineering Applications- McGraw Hill.

5. Driankov D., Hellendoorn H. and Reinfrank M., An Introduction to Fuzzy Control-Narosa Pub.

6. Bart Kosko, Neural Network and Fuzzy Systems- Prentice Hall, Inc., Englewood Cliffs

7. Goldberg D.E., Genetic Algorithms in Search, Optimization, and Machine Learning-Addison Wesley.

8. B. Yegnanarayana, Artificial Neural Networks, Prentice Hall, Inc., 2004.

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures			
1	Introduction to Soft Computing				
1.1	Introduction to soft computing techniques	2			
1.2	Artificial neural networks - biological neurons, Basic models of artificial neural networks – McCulloch and Pitts Neuron	3			
1.3	Perceptron networks Learning rule – Training and testing algorithm, Activation Functions				
	Multi-Layer Perceptrons				
1.4	Multi-layer perceptrons, Back propagation Network – Architecture, Learning algorithm	3			
2	Statistical Learning Models:				
2.1	Bayesian decision theory- Bayes classifier, Decision regions, significance of covariance matrix.	3			
	GMMs and Support vector machines				
2.2	Introduction to GMM. Support vector machines- introduction-concept	3			
	of maximum margin- Multi-class classifiers using SVM				
2.3	introduction-concept of maximum margin- Multi-class classifiers using SVM	3			

3	Fuzzy Systems	
3.1	Fuzzy logic - fuzzy sets - properties - operations on fuzzy sets, fuzzy	2
	relations -	
3.2	operations on fuzzy relations, Fuzzy membership functions,	2
	fuzzification, Methods of membership value assignments - intuition -	
	inference – rank ordering, Lambda –cuts for fuzzy sets	
	Defuzzification methods	1
3.3	Defuzzification methods- Truth values and Tables in Fuzzy Logic,	2
	Fuzzy propositions, Formation of fuzzy rules -	
3.4	Decomposition of rules – Aggregation of rules, Fuzzy Inference Systems	2
	– Mamdani and Sugeno types,	
3.5	Neuro-fuzzy hybrid systems -characteristics - classification	1
4	Genetic Algorithm	
4.1	Introduction to genetic algorithm, operators in genetic algorithm -	2
	coding - selection - cross over – mutation.	
4.2	Stopping condition for genetic algorithm flow, Genetic neuro hybrid	2
	systems,	
4.3	Genetic-Fuzzy rule based system	1

5	Design and Implementation of Simple Soft Computing Systems:	
5.1	Study of synthetic datasets- linearly separable- non linearly separable -	2
	overlapping types.	
5.2	Implementation of perceptrons- Bayes classifiers-	3
5.3	Implementation of ANNs using software tools.	3
5.4	Implementation of SVMss using software tools.	3

Assignment:

Assignment1: Implementation of Bayesian classifiers- Perceptrons.

Assignment2: Implementation of ANNs and SVMs

Model Question paper

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION

Course Code: AET382

Program: Minor in Applied Electronics and Instrumentation Engineering

Course Name: Soft Computing

Max. Marks: 100

Duration: 3 Hours

PART A

Answer ALL Questions. Each carries 3 marks.

1	With the help of a neat schematic, explain the operation of a perceptron. Also explain the significance of bias and activation function.	CO1	K2
2	Explain the significance of learning rate parameter associated with the perceptron learning.	CO1	K2
3	Explain Bayes decision theory. Discuss how a two class classification problem can be solved using Bayes classifier.	CO2	K2
4	What do you mean be maximum margin? Derive an expression for the margin of SVM.	CO2	K2
5	Give a list of properties and operations on a fuzzy set.	CO3	K3
6	Briefly explain the characteristics of fuzzy inference systems.	CO3	K2
7	Discuss the importance of Genetic Algorithm in soft computing.	CO4	K2
8	Explain various operators used in Genetic Algorithm	CO4	K2
9	Discuss how do you generate synthetic datasets for different experiments associated with building classifiers.	CO5	K2
10	Briefly explain the procedure for generating training, testing and validation datasets for experiments.	CO5	K2

PART – B

Answer one question from each module; each question carries 14 marks. Module – I

11. a)	Explain the learning rule for perceptron. Also explain how weights are updated in the perceptron learning process.	5	CO1	K2
11. b)	With neat waveforms and expressions explain the hard threshold logic and sigmoid activation functions. Discuss the significance of spread parameter associated with the sigmoid activation function.	9	CO2	K2

	OR			
12.a)	With the help of a neat diagram explain the architecture of a single hidden layer artificial Neural Network. Also discuss how different parameters such as number of neurons in different layers, initial weights, activation functions etc., are selected.	5	CO1	K2
12.b)	Explain the back propagation algorithm associated with the ANN learning. Also explain hoe weights are updated and conditions for convergence.	5	CO2	К2
12.c)	Discuss the significance of momentum constant associated with the ANN.	4	CO1	K2
	Module – II	n .		

13 a)	Give the expression for multivariate Gaussian distribution and explain each term. Explain the significance of covariance matrix.	9	CO2	K2		
13 b)	b) Design Bayes classifier for a two class classification problem. Assume that the data is distributed as per multivariate Gaussian. Explain the decision logic.					
	OR					
14 a)	With the help of a neat schematic explain the basic principle of GMM.	9	CO2	K2		

Module – III

15 a)	Explain the concept of fuzzy membership functions. Also explain basic features of membership functions.	5	CO3	K2	
15 b)	Discuss different methods for assigning membership values. Illustrate intuition and inference with relevant examples.	9	CO3	K3	
	OR				
16 a)	6 a) Briefly explain the basic principles of defuzzification. Explain any two defuzzification methods.				
16 b)	Compare and contrast between conventional control and fuzzy control systems.	4	CO3	K2	
16 c)	16 c) Explain the characteristics of a fuzzy inference system. Also with the help of sketches, explain Mamdani inference system				

Module – IV

17 a)	Briefly explain the concept of selection associated with the genetic algorithm. Distinguish between random selection and rank selection strategies.	9	CO3	K2
17 b)	What do you mean by cross over ? Explain single point and two point cross over with necessary illustrations. Also explain cross over probability.	5	CO4	К2
18 a)	Explain various stopping conditions for genetic algorithm flow. Compare and contrast between best individual and worst individual conditions for stopping.	9	CO3	K2
18 b)	With the help of a neat schematic explain genetic neuro hybrid systems	5	CO3	K2

Module – V

19 a)	6	CO4	K3				
19 b)	9 b) Explain the experimental set up and procedures for conducting pattern analysis experiments using SVM						
	OR						
20 a)	Briefly comment on available software tools for implementing ANNs and SVMs.	4	CO4	K2			
20 b)	Explain the experimental set up and procedures for conducting pattern analysis experiments using ANN using a suitable software tool	5	CO4	K3			
20 c)	Explain how do you perform multi-class classification using SVM. What are the different approaches for multi-class classification using SVM ?	5	CO2	K2			

AET384	MEMC	CATEGORY	L	Τ	Р	CREDITS
	MEMS	VAC	3	1	0	4

Preamble: This course aims to impart knowledge in design and fabrication of microsystems

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

CO 1	Explain the Laws of scaling, multidisciplinary nature of MEMS and various Engineering disciplines in MEMS.
CO 2	Describe the various actuation mechanisms employed in MEMS devices and the geometry of typical sensors and actuators
CO 3	Discuss the various process steps in microfabrication
CO4	Explain the various micromachining techniques and packaging techniques employed in MEMS
CO5	List and explain the multi-disciplinary applications of MEMS

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	3	3	3	2							2
CO 2	3	3	3	3	2			1				2
CO 3	3	3	3	3	2							2
CO 4	3	3	3	3	2							2
CO5	3	3	3	3	3							

Assessment Pattern

Bloom's Category		Continuous A Tests	ssessment	End Semester Examination		
		1 2014	2			
Remember	K1	10	10	10		
Understand	K2	30	30	60		
Apply	K3	10	10	30		
Analyse	K4					
Evaluate						
Create						

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Explain the Laws of scaling, multidisciplinary nature of MEMS and various Engineering disciplines in MEMS.

- 1. Explain the scaling laws that applies to MEMS
- 2. Discuss the multidisciplinary nature of MEMS
- 3. Discuss Microfluidics, MOEMS, Bio-MEMS and RF MEMS

Course Outcome 2 (CO2): Describe the various actuation mechanisms employed in MEMS devices and the geometry of typical sensors and actuators.

- 1. Explain the various actuation mechanisms employed MEMS sensors and actuators
- 2. Discuss parallel plate sensing employed in MEMS.
- 3. Describe the principle of micromotors, microvalves and microgrippers

Course Outcome 3 (CO3): Discuss the various process steps in microfabrication.

- 1. Explain Czochralski crystal growth process of single crystal silicon
- 2. Compare low pressure CVD (LPCVD) and Plasma Enhanced CVD (PECVD)
- 3. Describe the various steps of photolithography

Course Outcome 4 (CO4): Explain the various micromachining techniques and packaging techniques employed in MEMS.

- 1. Compare bulk and surface micromachining technique.
- 2. Discuss the microfabrication steps of making a MEMS cantilever
- 3. Explain LIGA process with an example

Course Outcome 5 (CO5): List and explain the multi-disciplinary applications of MEMS.

- 1. Describe MEMS medical pressure sensors.
- 2. Discuss the geometry and operation Digital Mirror Devices
- 3. Explain MEMS microphone

SYLLABUS

Module 1:

Introduction: Overview of microelectronics manufacture and Microsystem technology. Definition – MEMS materials. Laws of scaling. The multi-disciplinary nature of MEMS. Survey of materials central to micro engineering. Application of MEMS in various industries.

Module 2:

Microsensors and Actuators: Working Principle of Microsystems – various micro sensing and actuation techniques – parallel plate electrostatic sensing - micro sensors – various types – interdigitated finger capacitors or comb drive sensors - micro accelerometers. Microactuators – various types - micropump – micromotors – microvalves – microgrippers

Module 3:

Micro Fabrication : Substrates – Single crystal silicon wafer formation – Czochralski crystal growth process – Photolithography - Ion Implantation – Diffusion – Oxidation – Chemical Vapour Deposition – LPCVD – PECVD – Physical Vapour Deposition – Deposition Epitaxy – Etching process – various types – Photo resists

Module 4:

Microsystem Manufacturing: MEMS Process – Bulk Micromachining – Surface Micromachining -Sacrificial etching process – Micromachined cantilevers – LIGA Process – SLIGA – Microsystem packaging materials – die level – device level – System level – packaging techniques – die preparation - surface bonding – wire bonding – sealing

Module 5:

MEMS Applications: Bio-MEMS - Medical pressure sensors, Optical MEMS - Digital Mirror Devices (DMDs), Microfluidics – InkJet Print head technology, MEMS inertial sensors – Gyroscopes, RF MEMS – Switches, MEMS Microphones.

Text Books

- 1. Tai-Ran- Hsu, MEMS and Microsystems Design and Manufacture, Tata McGraw-Hill Publishing Company Limited, 2010
- 2. Chang Liu, Foundation of MEMS, Pearson Education, 2012

Reference Books

- 1. Mohamed Gad el Hak, "MEMS Handbook", CRC Press, 2002
- 2. Rai Choudhury P, "MEMS and MOEMS Technology and Applications", PHI Learning Private Limited, 2009
- 3. M. H. Bao, "Micromechanical Transducers: Pressure sensors, accelerometers and gyroscopes", Elsevier Pvt. Ltd., NewYork, 1st Edition, 2000
- 4. Marc Madou, "Fundamentals of Microfabrication", CRC Press, 1st Ed., 1997
- 5. Edited by D.Uttamchandani, "Handbook of MEMS for wireless and mobile applications", Woodhead Publishing Limited, 2013
- Stephen D. Senturia, "Microsystem Design", Kluwer Academic Publishers, 1st Ed. 2001

Course Contents and Lecture Schedule

No	Topic	No. of Lectures
1	MEMS –Introduction	
1.1	Overview of microelectronics manufacture and Microsystem technology	1
1.2	Quasi-fundamental scaling laws applicable to MEMS	2
1.3	Multi-disciplinary nature of MEMS and Microsystem	1
1.4	Survey of materials central to micro engineering	1
1.5	Application of MEMS in various industries	1
2	Microsensors and Actuators	
2.1	Overview of various micro sensing and actuation techniques	1
2.2	Parallel plate electrostatic sensing - analysis	2
2.3	Interdigitated finger capacitors or comb drive sensors and micro accelerometers	2
2.4	Microactuators – various types - micropump – micromotors	2
2.5	Microvalves – microgrippers	1
3	Microfabrication	
3.1	Single crystal silicon wafer formation – Czochralski crystal growth process	1
3.2	Photolithography	1

3.3	Ion Implantation – Diffusion – Oxidation	1
3.3	Chemical Vapour Deposition – LPCVD – PECVD – Physical Vapour Deposition – Sputtering process	3
3.4	Deposition Epitaxy – Etching process – various types – Photo resists	3
4	Microsystem Manufacturing	
4.1	MEMS Process – Bulk Micromachining – Surface Micromachining	2
4.2	-Sacrificial etching process – Micromachined cantilevers	2
4.3	LIGA Process – process steps , example , SLIGA	2
4.4	Microsystem packaging materials – die level – device level – System level	2
4.5	MEMS packaging techniques – die preparation - surface bonding – wire	2
	bonding - sealing	

5	MEMS Applications	
5.1	Bio-MEMS - Medical pressure sensors	2
5.2	Optical MEMS - Digital Mirror Devices (DMDs),	2
5.3	Microfluidics – InkJet Print head technology,	1
5.4	MEMS inertial sensors – Gyroscopes	2
5.5	MEMS microphones and RF MEMS switches	2

Assignment:

- 1. List the multidisciplinary applications of MEMS
- Perform a study of Bio-MEMS, microfluidics, MOEMS, RFMEMS
 Discuss various MEMS sensors and actuators

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION

Course Code: AET384

Program: Minor in Applied Electronics and Instrumentation Engineering / Electronics and Instrumentation Engineering

Course Name: MEMS

Max. Marks: 100

Duration: 3 Hours

PART A

	Answer ALL Questions. Each Carries 3 mark.	
1.	List the applications of MEMS devices in industry	K2
2	Comment on the multi-disciplinary nature of MEMS.	K2
3	Discuss the principal components of Microsystem.	K2
4	Explain the various actuation mechanisms employed in MEMS devices	K2
5	Write a brief note on positive and negative photoresists	K2
6	Compare Low Pressure CVD and Plasma Enhanced CVD	K2
7	Discuss the principle of LIGA process of fabricating MEMS devices	K2
8	Explain the MEMS packaging techniques surface bonding and wire bonding.	K2
9	Explain the principle of RF MEMS switches.	K2
10	Distinguish between Bio-MEMS and MOEMS.	K2

2014

PART – B

Answer one question from each module; each question carries 14 marks. **Module – I**

	11. a)	Describe the quasi-fundamental scaling laws that applies to MEMS	7	CO1	K3
1	11. b)	Perform a comparative study of microelectronics and microsystem	7	CO1	K2
		OR			

12.a)	Comment on the material properties central to microengineering	7	CO1	K3
12.b)	Explain the features of MEMS and list the critical factors that affect	7	CO1	K3
	commercialization of MEMS devices			

Module – II

13. a)	Discuss the principle of parallel-plate electrostatic microsensors. Draw a coupled electro – mechanical model and derive an expression for the electrostatic force at equilibrium	8	CO2	K3
13. b)	With sketches, explain the geometry and principle of micro grippers and micro valves	6	CO2	K2
	OR			
14.a)	Explain the sensing principle of longitudinal and transverse comb drive sensing. Derive an expression for the magnitude of force in transverse comb drive	8	CO2	K3
14.b)	With appropriate diagrams, explain the principle of micromotors and micropumps	6	CO2	K2

Module – III

15. a)	Describe the Czochralski growth process of obtaining single crystal silicon	7	CO3	K2
15. b)	Explain the process of wet chemical etching. Draw the etching profiles of isotropic and anisotropic etching	7	CO3	K2
	OR			
16.a)	OR With appropriate figures, explain the steps of photolithography	8	CO3	K2

Module – IV

17. a)	Compare bulk and surface micromachining process of fabricating MEMS devices	6	CO4	K2
17. b)	With figures, list the various stages of micromachining a MEMS cantilever. Discuss the sacrificial etching process	8	CO4	K3
	OR			
18.a)	With an example, describe the LIGA process of MEMS manufacturing	8	CO4	K3
18.b)	Explain four important functions of microsystem package.	6	CO4	K2

19. a)	Discuss Bio-MEMS. Explain the principle of MEMS medical pressure sensor	8	CO5	K2
19. b)	Describe the geometry and operation of MEMS microphone	6	CO5	K2
	A D I A D OR A I A	1		
20. a)	Comment on Optical MEMS. Explain the principle of Digital Mirror Devices (DMDs)	7	CO1	K2
20. b)	Discuss the geometry and principle of MEMS gyroscopes.	7	CO1	K2

Module – V

AET386	APPLIED ELEC	CATEGORY	\mathbf{SF}	۲up	P	CREDITS
	PROCESS CONTROL	VAC	3	1	0	4

Preamble: This course aims to understand the principles of process dynamics and to analyze the various types of process control systems.

Prerequisite: Fundamentals of differential equations and Laplace transform

Course Outcomes: After the completion of the course the student will be able to

CO 1	Explain the characteristics and elements of process dynamics
CO 2	Analyze a process control loop
CO 3	Model and tune a feedback controller
CO4	Analyze multi-loop and multi variable controllers

Mapping of course outcomes with program outcomes

	PO	PO	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO
	1	2		11	-					10	11	12
CO 1	3	3										2
CO 2	3	3			2							2
CO 3	3	3			2							2
CO 4	3	3			2							2

Assessment Pattern

Bloom's Cate	gory	Continuous Ass Tests	essment	End Semester Examination			
		¹ Estc.	2				
Remember	K1	10	10	10			
Understand	K2	30	30	60			
Apply	K3	10	10	30			
Analyze	K4						
Evaluate		2014					
Create				<i>d</i>			

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern: DELECTRONICS & INSTRUMENTATION

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Explain the characteristic principles and different elements involved in process dynamics

- 1. For a given physical system with resistive or capacitive characteristics, find the period of oscillation and damping.
- 2. Distinguish between the following processes (i) Regulating and non-regulating, (ii) Interacting and non-interacting and (iii) Linear and non linear
- 3. What are the criteria used for selecting the process variables?

Course Outcome 2 (CO2): Analyze a process control loop.

- 1. For a given control loop, derive the expression for steady state gain and process gain.
- 2. Find the expression for the transfer function of a temperature control system.
- 3. Compare SLPC and MLPC.

Course Outcome 3 (CO3): Model and tune various control systems such as feedback control systems, multi loop as well as nonlinear systems

- 1. Design aspects for a feedback -feedforward control system?
- 2. How can we model a liquid level control system?
- 3. What can you infer from dead band velocity limiting?

Course Outcome 4 (CO4): Analyze multi variable control systems and modelbased controllers

- 1. Derive the transfer function of a multi variable control system.
- 2. What is the importance of relative Gain Array?
APPLIED ELECTRONICS & INSTRUMENTATION SYLLABUS

Module 1:

Process characteristics: Incentives for process control, Process Variables types and selection criteria, Process degree of freedom, The period of Oscillation and Damping, Characteristics of physical System: Resistance, Capacitive and Combination of both. Elements of Process Dynamics, Types of processes- Dead time, Single /multi capacity, self-Regulating /non self-regulating, Interacting /non interacting, Linear/non-linear, and Selection of control action for them. Study of Liquid Processes, Gas Processes, Flow Processes, Thermal Processes in respect to above concepts.

Module 2:

Elements of Process Control Loop: Pneumatic and electric actuators, control valves - characteristics of control valves, valve positioner - I/P and P/I converters- Electronic Controllers. Analysis of Control Loop: Steady state gain, Process gain, Valve gain, Process time constant, Variable time Constant, Transmitter gain, linearizing an equal percentage valve, Variable pressure drop. Analysis of Liquid level Control, Temperature control. SLPC and MLPC features, faceplate, functions, SLPC and MLPC comparison. Scaling: types of scaling, examples of scaling.

Module 3:

Feedback Control: Basic principles, Elements of the feedback Loop, Block Diagram, Control Performance Measures for Common Input Changes, Selection of Variables for Control Approach to Process Control. Controller modes (P, PI, PD and PID) and tuning parameters. Tuning of feedback controllers: Process step testing, tuning for - Quarter Decay ratio response, minimal error integral criteria, sampled data controllers. Controller tuning for integrating processes – model of liquid level control system.

Module 4:

Multi Loop & Nonlinear Systems: Cascade control, Feed forward control, feedback-feed forward control, Ratio control, Selective Control, Split range control- Basic principles, Design Criteria, Performance, Implementation issues, Examples and any special features of the individual loop and industrial applications. Nonlinear Elements in Loop: Limiters, Dead Zones, Backlash, Dead Band Velocity Limiting, Negative Resistance.

Module 5:

Multivariable Control: Concept of Multivariable Control: Interactions and its effects, Modelling and transfer functions, Influence of Interaction on the possibility of feedback control, important effects on Multivariable system behaviour Relative Gain Array, effect of Interaction on stability and tuning of Multi Loop Control system. Model Based controllers: Internal Model control, Model Predictive controller, Dynamic matrix controller (DMC), Self-Tuning Controller.

Text Books

- 1. B.Wayne Bequette, Process Control: Modeling, Design and Simulation, PHI.
- 2. Donald Eckman Automatic Process Control, Wiley Eastern Limited.
- 3. F.G.Shinskey, Process control Systems ,TMH.
- 4. Carlos A. Smith, Armando B. Corripio Principles and practice of Automatic Process Control, John Wiley & Sons, 2nd edition.
- 5. Curtis D Johnson, Process Control Instrumentation Technology, Eighth Edition.

Reference Books

- 1. B.G.Liptak ,Handbook of Instrumentation -Process control , Chilton.
- 2. Considine, Process Instrumentation and control Handbook, 5th Ed., McGraw Hill.
- 3. Krishna Kant, Computer Based Industrial Control, PHI.
- 4. Murrill, Applications concepts of Process control, ISA.
- 5. Murrill, Fundamentals of Process Control, ISA.
- 6. Stephanopoulos George, Chemical Process Control, PHI.
- 7. T.J.Ross Fuzzy Logic with Engineering Applications, John Wiley & Sons, 2004.
- 8. Thomas E Marlin Process Control- Designing processes and Control Systems for

Dynamic performance, McGraw-Hill International Editions.

Course Contents and Lecture Schedule

	No	Торіс					
	1	Process characteristics:					
Î	1.1	Incentives for process control, Process Variables types and selection criteria.	1				
Î	1.2	Process degree of freedom, The period of Oscillation and Damping.					
Î	1.3	Characteristics of physical System: Resistance, Capacitive and Combination of both.	1				
	1.4	Elements of Process Dynamics, Types of processes- Dead time, Single /multi capacity, self-Regulating /non self-regulating, Interacting /non interacting, Linear/non-linear, and Selection of control action for them.	3				
	1.5	Study of Liquid Processes, Gas Processes, Flow Processes, Thermal Processes in respect to above concepts.	3				

	APPLIED ELECTRONICS & INSTRUM	IENTATI
2	Elements of Process Control Loop:	
2.1	Pneumatic and electric actuators	1
2.2	Control valves - characteristics of control valves, Valve Positioner	2
2.3	I/P and P/I converters, Electronic Controllers	1
2.4	Steady state gain, Process gain, Valve gain, Process time constant, Variable time Constant, Transmitter gain.	2
2.5	Linearizing an equal percentage valve, Variable pressure drop.	2
2.6	Analysis of Liquid level Control, Temperature control.	2
2.7	SLPC and MLPC features, faceplate, functions, SLPC and MLPC comparison.	1
2.8	Scaling: types of scaling, examples of scaling.	1
3	Feedback Control:	
3.1	Basic principles, Elements of the feedback Loop, Block Diagram,	1
3.2	Control Performance Measures for Common Input Changes, Selection of Variables for Control Approach to Process Control.	1
3.3	Controller modes and tuning parameters.	2
	Tuning of feedback controllers:	
3.4	Process step testing, tuning for - Quarter Decay ratio response, minimal error integral criteria, sampled data controllers.	2
3.5	Controller tuning for integrating processes – model of liquid level control system.	1
4	Multi Loop & Nonlinear Systems:	
	Basic principles, Design Criteria and Implementation issues of:	
4.1	Cascade control	1
4.2	Feed forward control	1
4.3	Feedback-feed forward control	1
4.4	Ratio control	1
4.5	Selective Control	1
4.6	Split range control	1

4.7	Examples and any special features of the individual loop and industrial	MENTATI	O
	applications		
4.8	Nonlinear Elements in Loop: Limiters, Dead Zones, Backlash, Dead	2	
	Band Velocity Limiting, Negative Resistance.		

5	Multivariable Control:	
5.1	Concept of Multivariable Control: Interactions and its effects, Modelling	2
	and transfer functions, Influence of Interaction on the possibility of	
	feedback control	
5.2	Important effects on Multivariable system behaviour Relative Gain Array, effect of Interaction on stability and tuning of Multi Loop Control system.	2
5.3	Model Based controllers: Internal Model control	1
5.4	Model Predictive controller	1
5.5	Dynamic matrix controller (DMC)	1
5.6	Self-Tuning Controller.	1

Assignment:

Atleast one assignment should be simulation of any one type of controller using MATLAB or SIMULINK.

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B. TECH DEGREE EXAMINATION

Course Code: AET386

Program: Minor in Applied Electronics and Instrumentation Engineering / Electronics and Instrumentation Engineering

Course Name: Process Control

Max. Marks: 100

Duration: 3 Hours

PART A

Answer ALL Questions. Each Carries 3 mark.

1.	Mention the various criteria that is taken into account while	K2
	selecting variables to control a given process	
	scieding values to control a given process.	
2	Define degrees of freedom of a process.	K2
2		
3	Draw the block diagram of a liquid level control loop.	K2
4	What is scaling? What are the different types of scaling?	K2
	5 71 5	
5	How will you select the best tuning constants for a feedback	K3
	controller?	
6		
6	What do you mean by minimal error integral criteria?	K2
7	Define dead band velocity limiting in non linear systems.	K2
-	J 6 J	
8	Mention few characteristics of cascade control.	K2
9	What is Relative Gain Array? How is it useful in predicting the	К2
/	intente eti en en ete hilitar in e multiveriel le control evetere	112
	interlaction on stability in a multivariable control system.	
10	List a few features of Internal model control	K2
10		112

PART – B

Answer one question from each module; each question carries 14 marks.

	Wodule – I			
11. a)	Draw the block diagram of a general process control system and explain its elements.	6	CO1	K2
11. b)	Derive the period of oscillation and damping for a second order resistive-capacitive system	8	CO1	K3
	OR			
12.a)	Compare the following systems with suitable examples (a) self-regulating and non self-regulating systems (b) Interacting and non-interacting systems	14	CO1	К3

Module – I

$Module - \Pi^{\text{PLIED}} ELECTRONICS \& INSTRUMENTATION$

13 a)	a) Derive the expression for process gain, valve gain and steady state gain for a flow control system.		CO2	K3
13 b)	Compare SLPC and MLPC features.	6	CO2	K2
	OR			
14 a)	Explain linearization of an equal percentage valve into a linear valve.	8	CO2	K2
14 b)	With a neat sketch, explain a temperature control system. Also derive the expression for process time constant.	6	CO2	K3

	Module – III	A		<u> </u>
15 a)	Derive the tuning parameters for a PID controller for a second order process.	5	CO3	K4
15 b)	Explain a technique for fine tuning of controller with suitable example.	5	CO3	K3
15 c)	What are the various control performance measures for common input changes for a feedback system?	4	CO3	K2
	OR			
16 a)	Explain the steps involved in tuning a process with feedback controller using step testing procedure.	8	CO3	K2
16 b)	How will you tune a process using feedback controller with Quarter Decay ratio response?	6	CO3	K3
			1	1

Module – IV

17 a)	Explain the multi loop control performance through decoupling	9	CO4	K2
17 b)	Explain in detail about the various tuning techniques used in multi loop control system.	5	CO4	К3
	OR			
18	Write neat sketches explain the following control loops: (a) Ratio control (b) Split range control	14	CO4	K2

Module – V

19	Write notes on: (a) Dynamic matrix controllers (b) Model predictive controller	14	CO4	К3
	OR			
20 a)	Explain the influence on interaction on the possibility of feedback control using a 2x2 system.	8	CO4	K3
20 b)	A multivariable system has the following state-space model $dx/dt = [-3 \ 2; \ 1 \ -4]x + [2 \ 0;0 \ 1]u$ and $y=Ix$ Obtain the transfer function model matrix for this system.	6	CO4	К3

AET 394	PWM SCHEME FOR POWER	CATEGORY	ŏĚ∥	T	∼P ™	CREDIT
	CONVERTERS	VAC	3	1	0	4

Preamble: This course aims to develop the skill to design PWM based power converters.

Prerequisite: AET306 Power Electronics

Course Outcomes: After the completion of the course the student will be able to

CO 1	Explain the principle of Sinusoidal and space vector pulse width modulation		
K2	K2 in three phase inverters		
CO 2	Apply the principle of sinusoidal and space vector modulation in multilevel inverters		
K3			
CO 3	03 Explain the principle of current source inverters		
K2	Explain the principle of editent source inverters		
CO 4	Discuss the principle of voltage source inverter fed drives		
K2	Discuss the principle of voltage source inverter led drives		
CO 5	Explain the principle of current source inverter fed drives		
K2	Explain the principle of current source inverter fed drives		

Mapping of course outcomes with program outcomes

	PO 10	PO 11	PO									
	1	2	3	4	5	6	7	8	9			12
CO 1		3			2							
CO 2		3			2							
CO 3		3			2							
CO 4		3			2							
CO 5		3			2							
CO 6		3			2							

Assessment Pattern

Bloom's Category	Continuous A Tests	Assessment	End Semester Examination		
	1	2			
Remember K1	10	10	10		
Understand K2	30	30	60		
Apply K3	10	10	30		
Analyse					
Evaluate					
Create					

Mark distribution

Total Marks	CIE	ESE	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern: PPLIED ELECTRONICS & INSTRUMENTATION

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Explain the principle of sinusoidal and space vector pulse width modulation in three phase inverters

- 1. Illustrate the principle of two-level, three phase voltage source inverters
- 2. Explain the principle of third harmonic injection in sinusoidal PWM
- 3. Explain the principle of overmodulation in sinusoidal and space vector PWM
- 4. Model and simulate two-level three phase voltage source inverter using sinusoidal and space vector PWM

Course Outcome 2 (CO2): Explain the principle of sinusoidal and space vector modulation in multilevel inverters

- 1. Explain three-level inverter topology of Neutral Point Clamped, Cascaded H-bridge and Flying capacitor inverters
- 2. Apply the principle of sinusoidal and space vector PWM in Neutral Point Clamped, Cascaded H-bridge and Flying capacitor inverters
- 3. Illustrate the adverse effect of common mode voltage in multilevel inverters and its elimination techniques (any 2 methods)
- 4. Model and simulate three level inverters.

Course Outcome 3 (CO3): Explain the principle of current source inverters.

- 1. Explain the principle of trapezoidal, selective harmonic elimination and space vector modulation in current source inverters
- 2. Explain the topology and space vector modulation technique of parallel current source inverter.
- 3. Model and simulate a PWM GCT CSI

Course Outcome 4 (CO4): Discuss the principle of voltage source inverter fed drives

- 1. Illustrate the principle of two-level inverter fed medium voltage drives
- 2. Illustrate the principle of three-level NPC inverter fed drive

- 3. Explain the principle of cascaded H-bridge and NPC-H bridge inverter fed drives
- 4. Model and simulate IGBT based three-level NPC and cascaded H-bridge inverter fed drives

Course Outcome 5 (CO5): Explain the principle of Current source inverter fed drives

- 1. Illustrate the principle of single bridge and dual bridge PWM rectifiers
- 2. Explain the principle of transformerless CSI Drive for Standard AC motors
- 3. Illustrate the principle of CSI drive with multipulse SCR rectifier
- 4. Explain the principle of LCI drives for synchronous motors
- 5. Model and simulate a low-cost CSI drive with 6-pulse SCR rectifier

SYLLABUS

Module 1 : Two-level Voltage Source Inverters (10)

Pulse width modulation - Sinusoidal PWM and Space vector modulation

Module 2 : Multilevel Inverters and Modulation Schemes 10

Neutral Point Clamped, Cascaded H-bridge and Flying capacitor multilevel inverters – Modulation Schemes – Common mode voltage and elimination schemes

Module 3 : PWM Current Source Inverters 9

Current source inverters – Trapezoidal Modulation-Selective Harmonic Elimination-Parallel current source inverters

Module 4 : Voltage Source Inverter-Fed Drives 8

Voltage source inverter based medium voltage drives- NPC and CHB inverter fed drives

Module 5 : Current Source Inverter-Fed Drives 8

Current source inverter drives with PWM rectifier-Trasnformerless CSI drive-CSI drive with multipulse SCR rectifier-LCI drives for Synchronous motors

Text Books

1. Bin Wu, "High - Power Converters and AC Drives", Wiley Interscience

Reference Books

1. G.Holmes & T.A. Lipo, "Pulse width Modulation for Power Converters, Principle and practice", IEEE Press, 2003

 M.P.Kazmierkowski, "Control of Power Converters : Selected Problems", Academic Press, 2003

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures
1	Two-level Voltage Source Inverters	
1.1	Two-level three phase voltage source inverters - Sinusoidal PWM- Modulation Scheme-Harmonic Content-Over modulation	3
1.2	Third Harmonic Injection PWM	1
1.3	Space vector modulation-Switching states-Space vectors-Space vector diagram	2
1.4	Dwell time calculation, modulation index, switching sequence	2
1.5	Overmodulation	1
1.6	Comparison of Sinusoidal PWM and Space vector modulation	1
2	Multilevel Inverters and Modulation Schemes	
2.1	Neutral point clamped three level inverter- converter configuration	1
2.2	Cascaded H-bridge three level Inverter –converter configuration	1
2.3	Flying capacitor three level inverter – converter configuration	1
2.4	Switching States and Space vector diagram of three-level inverter	2
2.5	Modulation Schemes- Sinusoidal PWM and Space vector PWM in three level inverters (basic principles only)	2
2.6	Optimum switching in Space vector PWM	1
2.7	Common mode voltage and its adverse effects in multilevel inverters– elimination techniques	2
3	PWM Current Source Inverters	
3.1	PWM Current source inverter-Trapezoidal modulation-basic principle only	2
3.2	Selective Harmonic Elimination – basic principle only	2
3.3	Space vector modulation in current source inverters	2
3.4	Parallel current source inverters – inverter topology	2
3.5	Space vector modulation in parallel current source inverters	1
4	Voltage Source Inverter-Fed Drives	
4.1	Two-level VBSI based medium voltage drives-power converter building block	2
4.2	Two-Level VSI with Passive Front End	1
4.3	GCT-Based NPC Inverter drives	1
4.4	IGBT-Based NPC Inverter drives	1
4.5	Multilevel CHB Inverter fed drives	2
4.6	NPC/H-bridge Inverter fed drives	1
5	Current Source Inverter-Fed Drives	1
5.1	CSI drives with single-bridge PWM rectifier	1
5.2	CSI drives with Dual bridge PWM rectifier	1
5.3	Transformerless CSI Drive for Standard AC Motors - CSI Drive Configuration	1
5.4	Integrated dc Choke for Common-Mode Voltage Suppression	1

5.5	CSI Drive with 18 pulse SCR Rectifier - Low-Cost CSI Drive with 6-	RUM <u>5</u> NTA	TIO
	Pulse SCR Rectifier		
5.6	LCI Drives for Synchronous Motors - LCI Drives with 12-Pulse Input and 6-Pulse Output - LCI Drives with 12-Pulse Input and 12-Pulse	2	
	Output		

Assignment:

At least one assignment should be simulation of power electronic circuits using any circuit simulation software.

Model Question paper

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION

Course Code: AET 394

Program: B Tech Honours in Applied Electronics and Instrumentation Engineering/ Electronics and Instrumentation Engineering

Course Name: PWM Scheme for Power Converters

Max. Marks: 100

Duration: 3Hours

PART A

Answer ALL Questions. Each Carries 3 mark.

1	What is the principle of sinusoidal PWM?	CO1	K2
2	What is redundant switching state in space vector PWM?	CO1	K2
3	Discuss the advantages and drawbacks of cascaded H-bridge inverters	CO2	K1
4	Explain the importance of optimum switching in space vector PWM	CO2	K2
5	Compare SVM, TPWM and SHE for current source inverters	CO3	K1
6	Explain the principle of load commutated inverters	CO3	K2
7	Draw the schematic of power converter building block used in medium voltage drives. What is the function of the snubber circuit?	CO4	K2
8	What is meant by N+1 redundancy in medium voltage drives?	CO4	K2
9	List the features of CSI medium voltage drives	CO5	K1
10	Discuss the use of an integrated dc choke for common mode voltage suppression in CSI drives.	CO5	K2

PART – B

Answer one question from each module; each question carries 14 marks.

	Module – I			
11(a)	Derive expression for dwell times for a 2-level voltage source inverter	8	CO1	K3

	employing space vector modulation	MEN	TAT	ON
11(b)	Illustrate the principle of third harmonic injection PWM	6	CO1	K3
	OR			
12(a)	Explain overmodulation in sinusoidal and space vector modulation	8	CO1	K3
12(b)	Compare sinusoidal PWM and space vector PWM	6	CO1	K2
	Module – II			
13(a)	Draw and explain the topology of 3-level neutral point clamped inverter with space vector diagram	8	CO2	K2
13(b)	Explain the importance of optimum switching in space vector PWM	6	CO2	K2
	OR			
14(a)	Draw and explain the topology of three-level cascaded H-bridge inverter	6	CO3	K2
14(b)	Define common mode voltage in three level inverters. What are its adverse effects? Discuss any one method for eliminating CMV.	8	CO3	K2
	Module – III			
15(a)	With schematic explain PWM GCT current source inverter	8	CO4	K2
15(b)	Explain the principle of trapezoidal modulation in current source inverters	6	CO4	K2
	OR			
16(a)	Illustrate the principle of parallel current source inverters for high-power MV drives	8	CO4	K2
16(b)	Discuss selective harmonic elimination technique in current source inverters	6	CO4	K2
	Module – IV			
17(a)	With schematic explain a typical two-level VSI drive with a passive front end.	8	CO5	K2
17(b)	List the advantages and drawbacks of CHB inverter drives	6	CO5	K2
	OR			
18(a)	With schematic explain GCT based three-level NPC inverter-fed drive	7	CO5	K2
18(b)	Draw and explain NPC/H-bridge inverter fed drive	7	CO5	K2
	Module – V			
19(a)	With schematic explain a CSI drive with single bridge PWM rectifier and inverter.	7	CO6	K2

19(b)	With circuit schematic explain the operation of LCI drive system with 12-pulse input and 6-pulse output.	лмер 7	CO6	K2
	OR			
20 (a)	Draw and explain the operation of transformerless CSI drive with an integrated dc choke	7	CO6	K2
20(b)	With schematic explain a CSI drive with 18 pulse SCR rectifier	7	CO6	K3

Simulation Assignments (AET 394)

The following simulations can be done in MATLAB software.

- 1. Sine triangle PWM generation for three phase, two-level inverter
- 2. Sine triangle PWM generation for three phase, three-level inverter
- 3. Space vector PWM for three phase, two-level inverter
- 4. Space vector PWM for three phase, three-level inverter
- 5. PWM GCT CSI

A ET306	APPLIED ELEC	CATEGORY	\mathbf{SF}	την	⊨P	CREDITS
AE 1 3 90	WIIAED CIRCUIT DESIGN	VAC	3	1	0	4

Preamble: This course aims to develop the skill of the design of various analog and digital circuits.

Prerequisite: Basic understanding of Analog and Digital circuits

Course Outcomes: After the completion of the course the student will be able to

CO 1	Analyze MOS amplifier circuits in CS, CD, CG and cascode configurations	K3
CO 2	Build current mirror and differential amplifier circuits	K3
CO 3	Develop operational amplifier circuits using differential amplifier stages.	K3
CO4	Explain concepts of PLL and Develop dynamic analog circuits using MOS switches	K2
CO5	Explain the working concepts of data convertors and develop circuits for D/A and A/D conversions.	K3

Mapping of course outcomes with program outcomes

	PO	PO	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO
	1	2								10	11	12
CO 1	3	3										2
CO 2	3	3			2							2
CO 3	3	3			2							2
CO 4	3	3			2							2
CO5	3	3			2							2

Assessment Pattern

Bloom's Cate	egory	Continuous A Tests	ssessment	End Semester Examination
		1	2	
Remember	K1	10	10	10
Understand	K2	30	30	60
Apply	K3	10	10	30
Analyse	K4			
Evaluate	•			
Create				

Mark distribution

Total	CIE	ESE	ESE Duration
Marks			
150	50	100	3 hours

Continuous Internal Evaluation Pattern: DELECTRONICS & INSTRUMENTATION

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Analyze MOS amplifier circuits in CS, CD, CG and cascode configurations.

- 1. Derive the output impedance and voltage gain of MOS amplifiers.
- 2. Design single stage MOS amplifiers for a given specification
- 3. Explain the working of Cascode configuration and the calculation of voltage gain

Course Outcome 2 (CO2): Build current mirror and differential amplifier circuits.

- 1. For the given power consumption and input CM level design a basic NMOS differential pair .
- 2. Explain the principle of operation of current mirror
- 3. Design a current copying circuit

Course Outcome 3 (CO3): Develop operational amplifier circuits using differential amplifier stages.

- 1. Design a single stage opamp amplifier for a specific gain.
- 2. Design a 2 stage opamp amplifier for an output swing.
- 3. Explain frequency compensation in opamp.

Course Outcome 4 (CO4): Explain concepts of PLL and Develop dynamic analog circuits using MOS switches

- 1. Explain the use of PLL as a frequency multiplier.
- 2. Design a low pass switched integrated circuit for a given cut off frequency
- 3. Explain the charge injection effect in series MOS switches.

Course Outcome 5 (CO5): Explain the working concepts of data convertors develop circuits for D/A and A/D conversions.

- 1. Design a 3 bit R-2R DAC circuit with R = 1Kohm and $R_f = 2$ Kohm
- 2. Explain the working concepts of cyclic DAC with an example
- 3. Design 3 bit Flash ADC and draw the transfer curve for Vin = 0 to 5V.

Module 1:

MOS Amplifiers: Common Source with resistive load, diode connected loads and current source load, CS stage with source degeneration, Source follower and CG stage (Derivation of Voltage Gain and Output impedance of circuits)

SYLLABUS

Cascoded stages : Cascoded amplifier, Cascoded amplifier with cascoded loads, Folded cascode Amplifier. Comparison of Cascode and folded cascode configuration.

Module 2:

MOS Current Mirror: Operation principle of basic current mirror. PMOS and NMOS current

Mirrors, Current mirror copying circuits, MOSFET cascode current mirror circuits

Differential Amplifiers: Need of Differential Amplifier. Basic MOS differential pair, Differential mode and Common mode gain. Differential Amplifier with diode connected load. Differential Amplifier with current source Load and current mirror load, MOS telescopic cascode amplifier. (Only Voltage Gain and Output impedance of circuits)

Module 3:

CMOS OP AMPS: Performance parameters in an opamp, Comparison of ideal and practical opamp, Single stage Folded cascode opamp. Two Stage Operational Amplifiers -Frequency compensation of OPAMPS - miller compensation, Design of classical two stage OP AMP

Comparator: Characterization of a comparator-static and dynamic, A two stage open loop comparator (analysis not required)

Module 4 :

Phase Locked Loop : Voltage controlled oscillators, Simple PLL, Basic PLL Topology, Charge Pump PLL, Basic Charge Pump PLL, Applications of PLL.

Switched Capacitor Circuits: Charge injection and clock feed through in MOS switches. Sample and hold circuits, Switched Capacitor Integrator, Ladder filters

Module 5:

Data Converters: DAC Specifications-DNL, INL, latency, SNR, Dynamic Range ADC Specifications-Quantization error, Aliasing, SNR, Aperture error

DAC Architecture: Resistor String, Charge Scaling, Cyclic and Pipeline types.

ADC Architecture: Flash, Pipe line and successive approximation ADC

Text Books

- 1. Razavi B., Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001
- 2. Phillip E. Allen, Douglas R. Holbery, CMOS Analog Circuit Design, Oxford, 2004.

Reference Books

- Baker, Li, Boyce, CMOS: Circuits Design, Layout and Simulation, Prentice Hall India, 2000
- 2. Razavi B., Fundamentals of Microelectronics, Wiley student Edition 2014.

Course Contents and Lecture Schedule

No	Торіс	No. of Lectures
1	MOS Amplifiers	
1.1	Common Source with resistive load, diode connected loads and current	3
	source load, CS stage with source degeneration. Calculation of Voltage gain and Output impedance.	
1.2	Source follower circuit working. Calculation of Voltage gain and Output impedance.	1
1.3	CG stage, Calculation of Voltage Gain and Output impedance of circuits in CG configuration	1
	Cascoded stages	
1.4	Cascoded amplifier, Cascoded amplifier with cascoded loads. Calculation of Voltage Gain and Output impedance	2
1.5	Folded cascode Amplifier : Fold up and fold down cascode.	2
	Calculation of Voltage Gain and Output impedance. Comparison with	
	Cascode configuration.	
2	MOS Current Mirror	
2.1	Operation principle of basic current mirror. PMOS and NMOS current	
	Mirrors, Current mirror copying circuits, MOSFET cascode current	2
	mirror circuits	_
	Differential Amplifiers	
2.2	Need of Differential Amplifier. Basic MOS differential pair,	1
	Differential mode and Common mode gain. Differential Amplifier with	4

	diode connected load APPLIED ELECTRONICS & INSTRUM	IENTAT
2.3	Differential Amplifier with current source Load and current mirror load, MOS telescopic cascode amplifier. (Only Voltage Gain and Output impedance of circuits)	3
3	CMOS OP AMPS	
3.1	Performance parameters in an opamp, Comparison of ideal and practical opamp Single stage Folded cascode opamp.	2
3.2	Two Stage Operational Amplifiers -Frequency compensation of OPAMPS - miller compensation, Design of classical two stage OP AMP	4
	Comparator	
3.3	Characterization of a comparator-static and dynamic, A two stage open loop comparator (analysis not required)	3
4	Phase Locked Loop	
4.1	Voltage controlled oscillators, Simple PLL, Basic PLL Topology, Charge Pump PLL, Basic Charge Pump PLL, Applications of PLL	4
4.2	Switched Capacitor Circuits	
	Charge injection and clock feed through in MOS switches. Sample and hold circuits, Switched Capacitor Integrator, Ladder filters	5
5	Data Converters	
5.1	DAC Specifications-DNL, INL, latency, SNR, Dynamic Range	4
	ADC Specifications-Quantization error, Aliasing, SNR, Aperture error	4
5.2	DAC Architecture - Resistor String, Charge Scaling, Cyclic and Pipeline types.	3
5.3	ADC Architecture- Flash, Pipe line and successive approximation ADC	2

Assignment:

Atleast one assignment should be simulation of MOS differential amplifiers and opamps on any circuit simulation software.

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION, (Model Question Paper)

Course Code: AET396

Program: Honours in Applied Electronics and Instrumentation Engineering/ Electronics and Instrumentation Engineering

Course Name: Mixed Circuit Design

Max. Marks: 100

Duration: 3 Hours

PART A
Answer ALL Questions. Each Carries 3 mark.

1.	Obtain the transfer characteristics of the circuit shown in the Figure V_{DD} R_D V_{out}	К3	
2	Calculate the small signal voltage gain of the circuit. $V_b \leftarrow M_2$ $V_{in} \leftarrow M_1$ $W_{in} \leftarrow M_1$ Est d.	K2	
3	Explain the need of differential amplifier circuits.	K1	
4	With relevant circuit diagram explain the working of a MOS current mirror circuit	K2	
5	Compare the characteristics of ideal and non ideal operational amplifier	K1	
6	Draw the general block diagram of a 2 stage opamp circuit and list the ideal characteristics.	K2	
7	Write notes on Charge injection	K1	
8	Briefly explain the working of PLL	K2	
9	Describe the working of a 3 bit Flash type A/D Converter, with a circuit diagram.	K2	
10	Explain Quantization error in the data convertors.	K1	

PART – BAnswer one question from each module; each question carries 14 marks.Module – I

Module – II

13 a)	Prove that in an NMOS differential pair amplifier:- $(V_{out1} - V_{out2})/(V_{in1} - V_{in2}) = -g_m R_D$	5	CO2	K2
13 b)	A designed system employs the circuit stages shown in Figure. Design a circuit that produces I_1 and I_2 from a 0.4-mA reference. $V_{in1} \longrightarrow V_{DD}$ $V_{in2} \longrightarrow V_{DD}$ $V_{in2} \longrightarrow V_{DD}$ $V_{in2} \longrightarrow V_{DD}$ $V_{in2} \longrightarrow V_{out2}$ $0.5 \text{ mA} \bigoplus I_2$	9	CO2	K3
	OR			

5	CO2	K2
	5	5 CO2

15 a)	Draw the circuit of a 2stage comparator circuit and explain the working.	4	CO3	K2
15 b)	Explain any two frequency compensation techniques in the opamp circuits.	10	CO3	К2
	OR			
16 a)	Explain the need of a 2 stage opamp circuit with appropriate circuit diagram.	4	CO2	K2
16 b)	Design the 2 stage opamp shown in the figure for a power budget = 6mW and maximum differential swing = 4V,Iss = 0.5mA.(Assume typical circuit parameters) V_{001}	10	CO3	K2
	Modulo IV			

	Module – IV			
17 a)	Discuss the usage of PLL in frequency multiplication and synthesis	6	CO4	K2
17 b)	Design a switched capacitor implementation of a summing	9	CO4	K2
	integrator with the relationship $V_o = \frac{v_1}{j\omega(\frac{C_F}{C_A f})} + \frac{v_2}{j\omega(\frac{C_F}{C_B f})}$			
	OR			
18 a)	Explain the non ideal effects in PLL	6	CO4	K2
18 b)	Explain the working of sample and hold circuits.	4	CO4	K2
18 c)	Write notes on Capacitive feed through in Dynamic circuits	4	CO4	K2
	Module - V			
19a)	Explain the working of R-2R ladder type DAC. In a 10 bit DAC, reference voltage is given as 10V. Find analog output for digital input of 1000011001	8	CO3	K3

19 b)	With neat diagram explain the working of cyclic DAC	6	CO4	K2
	OR			

20 a)	A 4-bit R-2R ladder type DAC having $R = 5 \text{ k}\Omega$ and $V_R = 5 \text{ V}$. Find its resolution and output voltage for inputs 1)1101 and 2) 1001	8	CO4	K3	101
20 b)	With neat diagram explain the working of pipeline ADC	6	CO4	K2	

Simulation Assignments

The following simulations can be done in LTSPICE.

- 1. Design single stage MOS amplifier stages in CS CD and CG configurations. Observe the input and output signals. Plot the AC frequency response and understand the variation of gain at high frequencies.
- 2. Design and simulate current mirror circuit for various reference currents and verify the W/L requirements of the devices .
- Design MOS amplifier stages in cascode configurations. Observe the input and output signals. Plot the AC frequency response and understand the tradeoffs.
- 4. Design and implement differential amplifier and measure its CMRR. Plot its transfer characteristics.
- 5. Design and simulate a 3 bit flash type ADC. Observe the output bit patterns and transfer characteristics
- 6. Design and simulate R 2R DAC circuit.
- 7. Observe the effect of clock feed through on the voltage across the load capacitors(C_L) in dynamic analog circuits. See the changes with the load capacitor(C_L) values

AET398	COMPUTER VISION	CATEGORY	2Γ	< T	P	CREDITS
		VAC	4	0	0	4

Preamble: This course aims to develop skills to implement solutions for computer vision challenges.

Prerequisite: AET322 Digital Image Processing.

Course Outcomes: After the completion of the course the student will be able to

CO 1	Explain the fundamentals of imaging systems, camera and derive its parameters.
CO 2	Apply various image processing and feature extraction techniques in computer vision applications.
CO 3	Demonstrate 3D modeling from 2D images.
CO4	Make use of motion analysis and detection methods in computer vision applications.
CO5	Apply deep neural network systems for computer vision challenges.

Mapping of course outcomes with program outcomes

	PO	PO	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO
	1	2								10	11	12
CO 1	3	3	3	2								3
CO 2	3	3	3	2	3							3
CO 3	3	3	3	2	3							3
CO 4	3	3	3	2	3							3
CO 5	3	3	3	2	3	2		-				3

Assessment Pattern

Bloom's Category		Continuous Ass Tests	essment	End Semester Examination
		1	2	
Remember	K1	10	10	10
Understand	K2	30	30	60
Apply	K3	10	10	30
Analyse	K4			
Evaluate	·			
Create				

Mark distribution

Total	CIE	ESE	ESE Duration
Marks			
150	50	100	3 hours

Continuous Internal Evaluation Pattern: DELECTRONICS & INSTRUMENTATION

Attendance	: 10 marks
Continuous Assessment Test (2 numbers)	: 25 marks
Assignment/Quiz/Course project	: 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Explain the fundamentals of imaging systems, camera and derive its parameters.

- 1. Explain pin hole camera model.
- 2. Differentiate intrinsic and extrinsic parameters.
- 3. Explain the concept of disparity and its relationship with depth

Course Outcome 2 (CO2): Apply various image processing and feature extraction techniques in computer vision applications.

- 1. For a given task, identify a method for feature extraction.
- 2. Find suitable application of SURF features.
- 3. Choose suitable technique for medical image segmentation.
- 4. Explore different applications of dimensionality reduction techniques.

Course Outcome 3 (CO3): Demonstrate 3D modeling from 2D images.

- 1. Given single image and reflectance map obtain its shape.
- 2. Derivation of Fundamental matrix.
- 3. Demonstrate the idea of obtaining structure from motion.

Course Outcome 4 (CO4): Make use of motion analysis and detection methods in computer vision applications.

- 1. Obtain optical flow for a given video.
- 2. Face detection using Viola Jones algorithm.
- 3. Pedestrian detection using HOG.

Course Outcome 5 (CO5): Apply deep neural network systems for computer vision challenges

1. Explain different layers in CNN.

2. Identify a CNN architecture for specific task. CTRONICS & INSTRUMENTATION

SYLLABUS

Module 1

Fundamentals of Image Formation: Pinhole camera. Perspective Projection, Homogeneous Coordinates. Camera: Intrinsic and extrinsic parameters. Transformation- Orthogonal, Euclidean and Affine. Orthographic projection; Parallel Projection. Camera Calibration, Stereo vision: introduction, concept of disparity and its relationship with depth.

Module 2

Feature Extraction: Edges - Canny, LOG, DOG. Line detection-Hough Transform. Corners - Harris and Hessian. SIFT, SURF, HOG. Image Segmentation and Pattern Analysis: Image Region Growing, Edge Based approaches to segmentation, Graph-Cut, Mean-Shift, MRFs. Clustering: K-Means, Mixture of Gaussians, Dimensionality Reduction: PCA

Module 3

Depth estimation: Binocular Stereopsis, Reflectance Map, Albedo estimation Photometric Stereo. Shape from shading- Propagation and Optimization Method, Frankot Chellappa Algorithm. Two view geometry- Epipolar geometry, Fundamental matrix, Essential Matrix. Structure from Motion: Triangulation, Two frame structure from motion.

Module 4

Motion Analysis- Regularization theory, Background Subtraction and Modeling, Optical Flow: brightness constancy equation, aperture problem, Horn-Shunck method, Lucas Kanade method, Depth from optical flow.

Object detection: Sliding window method, Detecting deformable objects. Face detection using Viola Jones algorithm. Face recognition using Eigen faces. Pedestrian Detection using HOG.

Module 5

Introduction to Neural Networks: Model of a biological neuron, activation functions, Back propagation, Learning XOR, Gradient-Based Learning. Convolutional Neural Networks, CNN Architectures - AlexNet, VGG 16, GoogLeNet, ResNet.

Text Books

- 1. Computer Vision: Algorithms and Applications, Richard Szeliski, Springer 2010.
- 2. Computer vision: A modern approach, by Forsyth and Ponce. Prentice Hall, 2002.
- 3. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016.

Reference Books

- 1. Multiple View Geometry in Computer Vision, Richard Hartley and Andrew Zisserman, Second Edition, Cambridge University Press, March 2004.
- 2. B K P Horn, Robot Vision, McGraw-Hill, 1986

No	Торіс	No. of Lectures
1	Fundamentals of Image Formation	
1.1	Pinhole camera. Perspective Projection, Homogeneous Coordinates.	2
1.2	Camera: Intrinsic and extrinsic parameters	2
1.3	Transformation- Orthogonal, Euclidean and Affine. Orthographic projection; Parallel Projection	2
1.4	Camera Calibration	1
1.5	Stereo vision: introduction; concept of disparity and its relationship with depth.	2
2	Feature Extraction	<i>.</i>
2.1	Edges - Canny, LOG, DOG	1
	Line detection-Hough Transform	1
2.2	Corners - Harris and Hessian	1
2.3	SIFT, SURF, HOG	2
2.4	Image Region Growing, Edge Based approaches to segmentation, Graph-Cut, Mean-Shift, MRFs.	2
2.5	Clustering: K-Means, Mixture of Gaussians,	1
2.6	Dimensionality Reduction: PCA	1
3	Depth estimation	
3.1	Binocular Stereopsis; Reflectance Map; Albedo estimation Photometric Stereo	2
3.2	Shape from shading- Propagation and Optimization Method, Frankot Chellappa Algorithm	2
	Two view geometry	
3.3	Epipolar geometry, Fundamental matrix, Essential Matrix	3
3.4	Structure from Motion: Triangulation, Two frame structure from motion.	2
4	Motion Analysis	
4.1	Regularization theory, Background Subtraction and Modeling	2
4.2	Optical Flow: brightness constancy equation, aperture problem, Horn- Shunck method, Lucas Kanade method, Depth from optical flow.	3
	Object detection	
4.3	Sliding window method, Detecting deformable objects.	1
4.4	Face detection using Viola Jones algorithm.	1
4.5	Face recognition using Eigen faces	1
4.6	Pedestrian Detection using HOG	1
5	Introduction to Neural Networks	
5.1	Model of a biological neuron, activation functions	1

5.2	Back propagation, Learning XOR ELECTRONICS & INSTRU	MENIATI
5.3	Gradient-Based Learning	2
5.4	Convolutional Neural Networks	2
	CNN Architectures	
5.5	AlexNet, VGG 16, GoogLeNet, ResNet.	3

Model Question paper

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION, (Model Question Paper)

Course Code: AET398

Program: B Tech. Honours in Applied Electronics and Instrumentation Engineering / Electronics and Instrumentation Engineering

Course Name: Computer Vision

Max. Marks:100

Duration: 3 Hours

PART A

Answer ALL Questions. Each question carries 3 marks.

1	Find linear transformation matrix that represent perspective projection and orthogonal projection?	CO1	K2
2	Explain the concept of disparity and its relationship with depth.	CO1	K2
3	Explain K-means clustering algorithm.	CO2	K2
4	Explain HOG algorithm.	CO2	K2
5	Explain the concept of obtaining shape from shading.	CO3	K2
6	Explain triangulation method.	CO3	K2
7	Prove that optical flow obtained using Lucas-Kanade algorithm is the least squared solution of optical flow constraint equation.	CO4	К3
8	What is aperture problem in optical flow.	CO4	K1
9	What do you mean by a learning algorithm?	CO5	K1
10	What are problems with SGD?	CO5	K2

PART - B

Answer one question from each module; each question carries 14 marks. **Module – I**

11. a)	Derive the camera calibration matrix. What are cameras intrinsic and extrinsic (calibration) parameters?	9	CO1	K2
11. b)	Obtain affine transformation matrix.	5	CO1	K2
	OR			

12.a)	Discuss on camera calibration.	9TR	CO1	K1
12.b)	Derive the perspective projection equation for a virtual image	5	CO1	K2
	located at a distance d in front of the pinhole.			

Module – II

13 a)	Explain Harris corner detection.	5	CO2	K2
13 b)	Briefly explain the principles of PCA. Explain the steps involved in determining principal components	9	CO2	K2
	TECTIOR			
14 a)	Explain how Hough transform can be used to detect lines.	5	CO2	K2
14 b)	Explain the steps for constructing SIFT feature.	9	CO2	K2

Module – III

15 a)	Let M1 and M2 be two camera matrices. Assume that $M1 = [I 0]$ and $M2 = [A a]$, where A is a 3x3 matrix. Prove that fundamental matrix corresponding to these camera matrices is of the form $F = [a]_xA$, where $[a]_x$ represents linear transformation matrix of cross product.	10	CO3	K4
15 b)	Explain photometric stereo for image reconstruction.	4	CO3	K2
	OR			
16 a)	Given reflectance map and a single image, explain how to obtain surface normals corresponding to real 3D scene that is imaged.	9	CO3	K3
16 b)	Explain the steps in obtaining structure from motion.	5	CO3	K2

Module – IV

17 a)	Explain in detail the computation of optical flow using Horn Schunk algorithm.	9	CO4	K2
17 b)	Explain Sliding window method for object detection.	5	CO4	K2
	OR			
18 a)	Explain face detection using Viola Jones algorithm.	9	CO4	K2
18 b)	Discuss on background Subtraction methods.	5	CO4	K2

Module – V

19 a)	Explain the role of optimization in machine learning algorithms.	4	CO5	К2
b)	Compare AlexNet and VGG 16 architectures.	5	CO5	К2
c)	Differentiate between RMS prop and ADAM.	5		K3
	OR			
20 a)	Explain the structure of Convolutional Neural Network.	10	CO5	K2
(b)	Explain the concept of back propagation.	4	CO5	K2

<u>COMMON COURSES</u> (S5 & S6)

Estd.

2014

MCN 301	DISASTER MANAGEMENT	Category	L	Т	Р	CREDIT	YEAR OF INTRODUCTION
		Non - Credit	2	0	0	Nil	2019

Preamble: The objective of this course is to introduce the fundamental concepts of hazards and disaster management.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

CO1	Define and use various terminologies in use in disaster management parlance and organise each of these terms in relation to the disaster management cycle (Cognitive knowledge level: Understand).
CO2	Distinguish between different hazard types and vulnerability types and do vulnerability assessment (Cognitive knowledge level: Understand).
CO3	Identify the components and describe the process of risk assessment, and apply appropriate methodologies to assess risk (Cognitive knowledge level: Understand).
CO4	Explain the core elements and phases of Disaster Risk Management and develop possible measures to reduce disaster risks across sector and community (Cognitive knowledge level: Apply)
CO5	Identify factors that determine the nature of disaster response and discuss the various disaster response actions (Cognitive knowledge level: Understand).
CO6	Explain the various legislations and best practices for disaster management and risk reduction at national and international level (Cognitive knowledge level: Understand).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO1 0	PO1 1	PO1 2
C01		2				2				2		2
CO2	2	3	2		2	2	3			3		2
CO3	2	3	2	2	2	2	3			3		2
CO4	3	3	3		2	2	3					2
CO5	3	3			2	2	3					2
CO6	3					2	3	3				2

Mapping of course outcomes with program outcomes

Abstract POs defined by National Board of Accreditation						
PO#	Broad PO	PO#	Broad PO			
PO1	Engineering Knowledge	PO7	Environment and Sustainability			
PO2	Problem Analysis	PO8	Ethics			
PO3	Design/Development of solutions	PO9	Individual and team work			
PO4	Conduct investigations of complex problems	PO10	Communication			
PO5	Modern tool usage	PO11	Project Management and Finance			
PO6	The Engineer and Society	PO12	Life long learning			

Assessment Pattern

Bloom's Category	Continuous A	ssessment Tests	End Semester	
	Test 1 (Marks)	Test 2 (Marks)	Examination Marks	
Remember	10	10	20	
Understand	25	25	50	
Apply	15	15	30	
Analyze				
Evaluate				
Create				

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment - Test	: 25 marks

Continuous Assessment - Assignment : 15 marks

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks. First series test shall be preferably conducted after completing the first half of the syllabus and the second series test shall be preferably conducted after completing remaining part of the syllabus. There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly completed module), having 3 marks for each question adding up to 15 marks for part A. Students should answer all questions from Part A.

Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly completed module), each with 7 marks. Out of the 7 questions, a student should answer any 5.

End Semester Examination Pattern:

There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have maximum 2 sub-divisions and carries 14 marks.

SYLLABUS

MCN 301 Disaster Management

Module 1

Systems of earth

Lithosphere- composition, rocks, soils; Atmosphere-layers, ozone layer, greenhouse effect, weather, cyclones, atmospheric circulations, Indian Monsoon; hydrosphere- Oceans, inland water bodies; biosphere

Definition and meaning of key terms in Disaster Risk Reduction and Management- disaster, hazard, exposure, vulnerability, risk, risk assessment, risk mapping, capacity, resilience, disaster risk reduction, disaster risk management, early warning systems, disaster preparedness, disaster prevention, disaster mitigation, disaster response, damage assessment, crisis counselling, needs assessment.

Module 2

Hazard types and hazard mapping; Vulnerability types and their assessment- physical, social, economic and environmental vulnerability.

Disaster risk assessment –approaches, procedures

Module 3

Disaster risk management -Core elements and phases of Disaster Risk Management

Measures for Disaster Risk Reduction – prevention, mitigation, and preparedness.

Disaster response- objectives, requirements; response planning; types of responses.

Relief; international relief organizations.

Module 4

Participatory stakeholder engagement; Disaster communication- importance, methods, barriers; Crisis counselling

Capacity Building: Concept – Structural and Non-structural Measures, Capacity Assessment; Strengthening Capacity for Reducing Risk

Module 5

Common disaster types in India; Legislations in India on disaster management; National disaster management policy; Institutional arrangements for disaster management in India.

The Sendai Framework for Disaster Risk Reduction- targets, priorities for action, guiding principles

Reference Text Book

- 1. R. Subramanian, Disaster Management, Vikas Publishing House, 2018
- 2. M. M. Sulphey, Disaster Management, PHI Learning, 2016
- 3. UNDP, Disaster Risk Management Training Manual, 2016

4. United Nations Office for Disaster Risk Reduction, Sendai Framework for Disaster Risk Reduction 2015-2030, 2015

Sample Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. What is the mechanism by which stratospheric ozone protects earth from harmful UV rays?
- 2. What are disasters? What are their causes?
- 3. Explain the different types of cyclones and the mechanism of their formation
- 4. Explain with examples, the difference between hazard and risk in the context of disaster management
- 5. Explain the following terms in the context of disaster management (a) exposure (b) resilience (c) disaster risk management (d) early warning systems, (e) damage assessment (f) crisis counselling (g) needs assessment

Course Outcome 2 (CO2):

- 1. What is hazard mapping? What are its objectives?
- 2. What is participatory hazard mapping? How is it conducted? What are its advantages?
- 3. Explain the applications of hazard maps
- 4. Explain the types of vulnerabilities and the approaches to assess them

Course Outcome 3 (CO3):

1. Explain briefly the concept of 'disaster risk'
- 2. List the strategies for disaster risk management 'before', 'during' and 'after' a disaster
- 3. What is disaster preparedness? Explain the components of a comprehensive disaster preparedness strategy

Course Outcome 4 (CO4):

- 1. What is disaster prevention? Distinguish it from disaster mitigation giving examples
- 2. What are the steps to effective disaster communication? What are the barriers to communication?
- 3. Explain capacity building in the context of disaster management

Course Outcome 5 (CO5):

- 1. Briefly explain the levels of stakeholder participation in the context of disaster risk reduction
- 2. Explain the importance of communication in disaster management
- 3. Explain the benefits and costs of stakeholder participation in disaster management
- 4. How are stakeholders in disaster management identified?

Course Outcome 6 (CO6):

- 1. Explain the salient features of the National Policy on Disaster Management in India
- 2. Explain the guiding principles and priorities of action according to the Sendai Framework for Disaster Risk Reduction
- 3. What are Tsunamis? How are they caused?
- 4. Explain the earthquake zonation of India

Model Question paper

OP CODE:

Reg No:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIFTH SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR

Course Code: MCN 301

Course Name: Disaster Management

Max.Marks:100

PART A

Answer all Questions. Each question carries 3 Marks

- What is the mechanism by which stratospheric ozone protects earth from harmful UV 1. rays?
- 2 What are disasters? What are their causes?
- 3. What is hazard mapping? What are its objectives?
- Explain briefly the concept of 'disaster risk' 4.
- 5. List the strategies for disaster risk management 'before', 'during' and 'after' a disaster
- 6. What is disaster prevention? Distinguish it from disaster mitigation giving examples
- Briefly explain the levels of stakeholder participation in the context of disaster risk 7. reduction
- 8. Explain the importance of communication in disaster management
- 9. What are Tsunamis? How are they caused?
- 10. Explain the earthquake zonation of India

Part B

Answer any one Question from each module. Each question carries 14 Marks

PAGES:3

Name :

Duration: 3 Hours

11. a. Explain the different types of cyclones and the mechanism of their formation [10]

b. Explain with examples, the difference between hazard and risk in the context of disaster management

[4]

OR

12. Explain the following terms in the context of disaster management					
(a) exposure (b) resilience (c) disaster risk management (d) early warning systems, (e) assessment (f) crisis counselling (g) needs assessment					
13.	a. What is participatory hazard mapping? How is it conducted? What are its advan	tages?			
	b Explain the applications of hazard maps	[0] [6]			
	OR	[0]			
14.	Explain the types of vulnerabilities and the approaches to assess them	[14]			
15.	a. Explain the core elements of disaster risk management	[8]			

b. Explain the factors that decide the nature of disaster response [6]

OR

- a. What is disaster preparedness? Explain the components of a comprehensive disaster preparedness strategy [6]
 b. Explain the different disaster response actions [8]
 a. Explain the benefits and costs of stakeholder participation in disaster management [10]
 - b. How are stakeholders in disaster management identified? [4]

OR

- 18. a. What are the steps to effective disaster communication? What are the barriers to communication? [7]
 - b. Explain capacity building in the context of disaster management [7]

19. Explain the salient features of the National Policy on Disaster Management in India

[14]

OR

20. Explain the guiding principles and priorities of action according to the Sendai Framework for Disaster Risk Reduction [14]

Teaching Plan

	Module 1	5 Hours
1.1	Introduction about various Systems of earth, Lithosphere- composition, rocks, Soils; Atmosphere-layers, ozone layer, greenhouse effect, weather	1 Hour
1.2	Cyclones, atmospheric circulations, Indian Monsoon; hydrosphere- Oceans, inland water bodies; biosphere	1 Hour
1.3	Definition and meaning of key terms in Disaster Risk Reduction and Management- disaster, hazard,	1 Hour
1.4	Exposure, vulnerability, risk, risk assessment, risk mapping, capacity, resilience, disaster risk reduction, Disaster risk management, early warning systems	1 Hour
1.5	Disaster preparedness, disaster prevention, disaster, Mitigation, disaster response, damage assessment, crisis counselling, needs assessment.	1 Hour
	Module 2	5 Hours
2.1	Various Hazard types, Hazard mapping; Different types of Vulnerability types and their assessment	1 Hour
2.2	Vulnerability assessment and types, Physical and social vulnerability	1 Hour
2.3	Economic and environmental vulnerability, Core elements of disaster risk assessment	1 Hour
2.4	Components of a comprehensive disaster preparedness strategy approaches, procedures	1 Hour
2.5	Different disaster response actions	1 Hour
	Module 3	5 Hours
3.1	Introduction to Disaster risk management, Core elements of Disaster Risk Management	1 Hour
3.2	Phases of Disaster Risk Management, Measures for Disaster Risk Reduction	1 Hour
3.3	Measures for Disaster prevention, mitigation, and preparedness.	1 Hour

3.4	Disaster response- objectives, requirements. Disaster response planning; types of responses.	1 Hour		
3.5	Introduction- Disaster Relief, Relief; international relief organizations.	1 Hour		
	Module 4	5 Hours		
4.1	Participatory stakeholder engagement	1 Hour		
4.2	Importance of disaster communication.	1 Hour		
4.3	Disaster communication- methods, barriers. Crisis counselling			
4.4	Introduction to Capacity Building. Concept – Structural Measures, Non-structural Measures.			
4.5	Introduction to Capacity Assessment, Capacity Assessment; Strengthening, Capacity for Reducing Risk	1 Hour		
	Module 5	5 Hours		
5.1	Introduction-Common disaster types in India.	1 Hour		
5.2	Common disaster legislations in India on disaster management	1 Hour		
5.3	National disaster management policy, Institutional arrangements for disaster management in India.	1 Hour		
5.4	The Sendai Framework for Disaster Risk Reduction and targets	1 Hour		
5.5	The Sendai Framework for Disaster Risk Reduction-priorities for action, guiding principles	1 Hour		

HUT 300	Industrial Economics &	Category	L	Т	Р	CREDIT
	Foreign Trade	HSMC	3	0	0	3

Preamble: To equip the students to take industrial decisions and to create awareness of economic environment.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

CO1	Explain the problem of scarcity of resources and consumer behaviour, and to evaluate the impact of government policies on the general economic welfare. (Cognitive knowledge level: Understand)
CO2	Take appropriate decisions regarding volume of output and to evaluate the social cost of production. (Cognitive knowledge level: Apply)
CO3	Determine the functional requirement of a firm under various competitive conditions. (Cognitive knowledge level: Analyse)
CO4	Examine the overall performance of the economy, and the regulation of economic fluctuations and its impact on various sections in the society. (Cognitive knowledge level: Analyse)
CO5	Determine the impact of changes in global economic policies on the business opportunities of a firm. (Cognitive knowledge level: Analyse)

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2										3	
CO2	2	2			2	2	3				3	
CO3	2	2	1								3	
CO4	2	2	1			1					3	
CO5	2	2	1								3	

Abstract POs defined by National Board of Accreditation						
PO#	Broad PO	PO#	Broad PO			
PO1	Engineering Knowledge	PO7	Environment and Sustainability			
PO2	Problem Analysis	PO8	Ethics			
PO3	Design/Development of solutions	PO9	Individual and team work			
PO4	Conduct investigations of complex problems	PO10	Communication			
PO5	Modern tool usage	PO11	Project Management and Finance			
PO6	The Engineer and Society	PO12	Lifelong learning			

Assessment Pattern

Bloom's Category	Continuous A	End Semester Examination Marks	
	Test 1 (Marks) Test 2 (Marks)		
Remember	15	15	30
Understand	20	20	40
Apply	15	15	30

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment - Test (2 numbers)	: 25 marks
Continuous Assessment - Assignment	: 15 marks

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks. First series test shall be preferably conducted after completing the first half of the syllabus and the second series test shall be preferably conducted after completing remaining part of the syllabus. There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly completed module), having 3 marks for each question adding up to 15 marks for part A. Students should answer all questions from Part A. Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly completed module), having a student should answer any 5.

End Semester Examination Pattern:

There will be two parts; Part A and Part B.

Part A : 30 marks

Part B : 70 marks

Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have maximum 3 sub-divisions and carries 14 marks.

SYLLABUS

HUT 300 Industrial Economics & Foreign Trade

Module 1 (Basic Concepts and Demand and Supply Analysis)

Scarcity and choice - Basic economic problems- PPC – Firms and its objectives – types of firms – Utility – Law of diminishing marginal utility – Demand and its determinants – law of demand – elasticity of demand – measurement of elasticity and its applications – Supply, law of supply and determinants of supply – Equilibrium – Changes in demand and supply and its effects – Consumer surplus and producer surplus (Concepts) – Taxation and deadweight loss.

Module 2 (Production and cost)

Production function – law of variable proportion – economies of scale – internal and external economies – Isoquants, isocost line and producer's equilibrium – Expansion path – Technical progress and its implications – Cobb-Douglas production function - Cost concepts – Social cost: private cost and external cost – Explicit and implicit cost – sunk cost - Short run cost curves - long run cost curves – Revenue (concepts) – Shutdown point – Break-even point.

Module 3 (Market Structure)

Perfect and imperfect competition – monopoly, regulation of monopoly, monopolistic completion (features and equilibrium of a firm) – oligopoly – Kinked demand curve – Collusive oligopoly (meaning) – Non-price competition – Product pricing – Cost plus pricing – Target return pricing – Penetration pricing – Predatory pricing – Going rate pricing – Price skimming.

Module 4 (Macroeconomic concepts)

Circular flow of economic activities – Stock and flow – Final goods and intermediate goods -Gross Domestic Product - National Income – Three sectors of an economy- Methods of measuring national income – Inflation- causes and effects – Measures to control inflation-Monetary and fiscal policies – Business financing- Bonds and shares -Money market and Capital market – Stock market – Demat account and Trading account - SENSEX and NIFTY.

Module 5 (International Trade)

Advantages and disadvantages of international trade - Absolute and Comparative advantage theory - Heckscher - Ohlin theory - Balance of payments – Components – Balance of Payments

deficit and devaluation – Trade policy – Free trade versus protection – Tariff and non-tariff barriers.

Reference Materials

- 1. Gregory N Mankiw, 'Principles of Micro Economics', Cengage Publications
- 2. Gregory N Mankiw, 'Principles of Macro Economics', Cengage Publications
- 3. Dwivedi D N, 'Macro Economics', Tata McGraw Hill, New Delhi.
- 4. Mithani D M, 'Managerial Economics', Himalaya Publishing House, Mumbai.
- 5. Francis Cherunilam, 'International Economics', McGraw Hill, New Delhi.

Sample Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Why does the problem of choice arise?
- 2. What are the central problems?
- 3. How do we solve the basic economic problems?
- 4. What is the relation between price and demand?
- 5. Explain deadweight loss due to the imposition of a tax.

Course Outcome 2 (CO2):

- 1. What is shutdown point?
- 2. What do you mean by producer equilibrium?
- 3. Explain break-even point;

4. Suppose a chemical factory is functioning in a residential area. What are the external costs?

Course Outcome 3 (CO3):

- 1. Explain the equilibrium of a firm under monopolistic competition.
- 2. Why is a monopolist called price maker?
- 3. What are the methods of non-price competition under oligopoly?

4. What is collusive oligopoly?

Course Outcome 4 (CO4):

- 1. What is the significance of national income estimation?
- 2. How is GDP estimated?
- 3. What are the measures to control inflation?
- 4. How does inflation affect fixed income group and wage earners?

Course Outcome 5 (CO5):

- 1. What is devaluation?
- 2. Suppose a foreign country imposes a tariff on Indian goods. How does it affect India's exports?
- 3. What is free trade?
- 4. What are the arguments in favour of protection?

Model Question paper

OP CODE:

Reg No:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH /SIXTH SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR

Course Code: HUT 300

Course Name: Industrial Economics & Foreign Trade

Max.Marks:100

Duration: 3 Hours

PART A

Answer all Questions. Each question carries 3 Marks

- 1. Why does an economic problem arise?
- 2. What should be the percentage change in price of a product if the sale is to be increased by 50 percent and its price elasticity of demand is 2?
- 3. In the production function $Q = 2L^{1/2}K^{1/2}$ if L=36 how many units of capital are needed to

produce 60 units of output?

- 4. Suppose in the short run AVC 4. Suppose in the short run AVC<P<AC. Will this firm produce or shut down? Give reason.
- 5. What is predatory pricing?
- 6. What do you mean by non- price competition under oligopoly?
- 7. What are the important economic activities under primary sector?
- 8. Distinguish between a bond and share?
- 9. What are the major components of balance of payments?

PAGES:3

Name :

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11. a) Prepare a utility schedule showing units of consumption, total utility and marginal utility, and explain the law of diminishing marginal utility. Point out any three limitations of the law.

b) How is elasticity of demand measured according to the percentage method? How is the measurement of elasticity of demand useful for the government?

Or

12. a) Explain the concepts consumer surplus and producer surplus.

b) Suppose the government imposes a tax on a commodity where the tax burden met by the consumers. Draw a diagram and explain dead weight loss. Mark consumer surplus, producer surplus, tax revenue and dead weight loss in the diagram.

MODULE II

13. a) What are the advantages of large-scale production?

b) Explain Producer equilibrium with the help of isoquants and isocost line. What is expansion path?

Or

14. a) Explain break-even analysis with the help of a diagram.

- b) Suppose the monthly fixed cost of a firm is Rs. 40000 and its monthly total variable cost is Rs. 60000.
 - i. If the monthly sales is Rs. 120000 estimate contribution and break-even sales.
 - ii. If the firm wants to get a monthly profit of Rs.40000, what should be the sales?
- c) The total cost function of a firm is given as $TC=100+50Q 11Q^2+Q^3$. Find marginal cost when output equals 5 units.

MODULE III

15. a) What are the features of monopolistic competition?

b) Explain the equilibrium of a firm earning supernormal profit under monopolistic competition.

Or

16.a) Make comparison between perfect competition and monopoly.

b) Explain price rigidity under oligopoly with the help of a kinked demand curve.

MODULE IV

17. a) How is national income estimated under product method and expenditure method?

b) Estimate GDPmp, GNPmp and National income

Private consumption expenditure	= 2000 (in 000 cores)
Government Consumption	= 500
NFIA	= -(300)
Investment	= 800
Net=exports	=700
Depreciation	= 400
Net-indirect tax	= 300

Or

- 18. a) What are the monetary and fiscal policy measures to control inflation?
 - b) What is SENSEX?

MODULE V

- 19. a) What are the advantages of disadvantages of foreign trade?
 - b) Explain the comparative cost advantage.

Or

- 20. a) What are the arguments in favour protection?
 - b) Examine the tariff and non-tariff barriers to international trade.

 $(5 \times 14 = 70 \text{ marks})$

Module 1 (Basic concepts and Demand and Supply Analysis)				
1.1	Scarcity and choice – Basic economic problems - PPC	1 Hour		
1.2	Firms and its objectives – types of firms	1 Hour		
1.3	Utility – Law of diminishing marginal utility – Demand – law of demand	1 Hour		
1.4	Measurement of elasticity and its applications	1 Hour		
1.5	Supply, law of supply and determinants of supply	1 Hour		
1.6	Equilibrium – changes in demand and supply and its effects	1 Hour		
1.7	Consumer surplus and producer surplus (Concepts) – Taxation and deadweight loss.	1 Hour		
	Module 2 (Production and cost)	7 Hours		
2.1	Productions function – law of variable proportion	1 Hour		
2.2	Economies of scale – internal and external economies	1 Hour		
2.3	producers equilibrium – Expansion path	1 Hour		
2.4	Technical progress and its implications – cob Douglas Production function	1 Hour		
2.5	Cost concepts – social cost: private cost and external cost – Explicit and implicit cost – sunk cost	1 Hour		
2.6	Short run cost curves & Long run cost curves	1 Hour		
2.7	Revenue (concepts) – shutdown point – Break-even point.	1 Hour		
	Module 3 (Market Structure)	6 hours		
3.1	Equilibrium of a firm, MC – MR approach and TC – TR approach	1 Hour		
3.2	Perfect competition & Imperfect competition	1 Hour		
3.3	Monopoly – Regulation of monopoly – Monopolistic competition	1 Hour		
3.4	Oligopoly – kinked demand curve	1 Hour		
3.5	Collusive oligopoly (meaning) – Non price competition	1 Hour		
3.6	Cost plus pricing – Target return pricing – Penetration, Predatory pricing – Going rate pricing – price skimming	1 Hour		

Teaching Plan

	7 Hours	
4.1	Circular flow of economic activities	1 Hour
4.2	Stock and flow – Final goods and intermediate goods – Gross Domestic Product - National income – Three sectors of an economy	1 Hour
4.3	Methods of measuring national income	1 Hour
4.4	Inflation – Demand pull and cost push – Causes and effects	1 Hour
4.5	Measures to control inflation – Monetary and fiscal policies	1 Hour
4.6	Business financing – Bonds and shares – Money market and capital market	1 Hour
4.7	Stock market – Demat account and Trading account – SENSEX and NIFTY	1 Hour
	Module 5 (International Trade)	8 Hours
5.1	Advantages and disadvantages of international trade	1 Hour
5.2	Absolute and comparative advantage theory	2 Hour
5.3	Heckscher – Ohlin theory	1 Hour
5.4	Balance of payments - components	1 Hour
5.5	Balance of payments deficit and devaluation	1 Hour
5.6	Trade policy – Free trade versus protection	1 Hour
5.7	Tariff and non tariff barriers.	1 Hour

HUT		Category	L	Т	Р	Credit
310	Management for Engineers	НМС	3	0	0	3

Preamble: This course is intended to help the students to learn the basic concepts and functions of management and its role in the performance of an organization and to understand various decision-making approaches available for managers to achieve excellence. Learners shall have a broad view of different functional areas of management like operations, human resource, finance and marketing.

Prerequisite: Nil

Course Outcomes After the completion of the course the student will be able to

COL	Explain the characteristics of management in the contemporary context (Cognitive
	Knowledge level: Understand).
CO2	Describe the functions of management (Cognitive Knowledge level: Understand).
CO3	Demonstrate ability in decision making process and productivity analysis (Cognitive
	Knowledge level: Understand).
COA	Illustrate project management technique and develop a project schedule (Cognitive
C04	Knowledge level: Apply).
COS	Summarize the functional areas of management (Cognitive Knowledge level:
	Understand).
CO6	Comprehend the concept of entrepreneurship and create business plans (Cognitive
	Knowledge level: Understand).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2				1	2	2	2		2	1	1
CO2	2				1	1		2	1	2	1	1
CO3	2	2	2	2	1							
CO4	2	2	2	2	1						2	1
CO5	2					1	1		1	2	1	
CO6		2	2	2	1	1	1	1	1	1	1	1

Mapping of course outcomes with program outcomes

Abstract POs defined by National Board of Accreditation						
PO1	Engineering Knowledge	PO7	Environment and Sustainability			
PO2	Problem Analysis	PO8	Ethics			
PO3	Design/Development of solutions	PO9	Individual and team work			
PO4	Conduct investigations of complex problems	PO10	Communication			
PO5	Modern tool usage	PO11	Project Management and Finance			
PO6	The Engineer and Society	PO12	Life long learning			

Assessment Pattern

Bloom's	Test 1 (Marks in	Test 2 (Marks in	End Semester Examination
Category	percentage)	percentage)	(Marks in percentage)
Remember	15	15	30
Understand	15	15	30
Apply	20	20	40
Analyse			
Evaluate			
Create			

Mark Distribution

Total Marks CIE Marks		ESE Marks	ESE Duration	
150	50	100	3 Hours	

Continuous Internal Evaluation Pattern:

Attendance	: 10 marks
Continuous Assessment - Test	: 25 marks
Continuous Assessment - Assignment	: 15 marks

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks. First series test shall be preferably conducted after completing the first half of the syllabus and the second series test shall be preferably conducted after completing remaining part of the syllabus. There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly completed module), having 3 marks for each question adding up to 15 marks for part A. Students should answer all questions from Part A. Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly completed module), each with 7 marks. Out of the 7 questions, a student should answer any 5.

End Semester Examination Pattern:

There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have maximum 2 sub-divisions and carries 14 marks.

SYLLABUS

HUT 310 Management for Engineers (35 hrs)

Module 1 (Introduction to management Theory- 7 Hours)

Introduction to management theory, Management Defined, Characteristic of Management, Management as an art-profession, System approaches to Management, Task and Responsibilities of a professional Manager, Levels of Manager and Skill required.

Module 2 (management and organization- 5 hours)

Management Process, Planning types, Mission, Goals, Strategy, Programmes, Procedures, Organising, Principles of Organisation, Delegation, Span of Control, Organisation Structures, Directing, Leadership, Motivation, Controlling..

Module 3 (productivity and decision making- 7 hours)

Concept of productivity and its measurement; Competitiveness; Decision making process; decision making under certainty, risk and uncertainty; Decision trees; Models of decision making.

. Module 4 (project management- 8 hours)

Project Management, Network construction, Arrow diagram, Redundancy. CPM and PERT Networks, Scheduling computations, PERT time estimates, Probability of completion of project, Introduction to crashing.

Module 5 (functional areas of management- 8 hours)

Introduction to functional areas of management, Operations management, Human resources management, Marketing management, Financial management, Entrepreneurship, Business plans, Corporate social responsibility, Patents and Intellectual property rights.

References:

- H. Koontz, and H. Weihrich, Essentials of Management: An International Perspective. 8th ed., McGraw-Hill, 2009.
- 2. P C Tripathi and P N Reddy, Principles of management, TMH, 4th edition, 2008.
- 3. P. Kotler, K. L. Keller, A. Koshy, and M. Jha, Marketing Management: A South Asian Perspective. 14th ed., Pearson, 2012.
- 4. M. Y. Khan, and P. K. Jain, Financial Management, Tata-McGraw Hill, 2008.
- 5. R. D. Hisrich, and M. P. Peters, Entrepreneurship: Strategy, Developing, and Managing a New Enterprise, 4th ed., McGraw-Hill Education, 1997.
- D. J. Sumanth, Productivity Engineering and Management, McGraw-Hill Education, 1985.
- K.Ashwathappa, 'Human Resources and Personnel Management', TMH, 3 rd edition, 2005.
- R. B. Chase, Ravi Shankar and F. R. Jacobs, Operations and Supply Chain Management, 14th ed. McGraw Hill Education (India), 2015.

Sample Course Level Assessment Questions

Course Outcome1 (CO1): Explain the systems approach to management?

Course Outcome 2 (CO2): Explain the following terms with a suitable example Goal, Objective, and Strategy.

Course Outcome 3 (CO3): Mr. Shyam is the author of what promises to be a successful novel. He has the option to either publish the novel himself or through a publisher. The publisher is offering Mr. Shyam Rs. 20,000 for signing the contract. If the novel is successful, it will sell 200,000 copies. Else, it will sell 10,000 copies only. The publisher pays a Re. 1 royalty per copy. A market survey indicates that there is a 70% chance that the novel will be successful. If Mr. Shyam undertakes publishing, he will incur an initial cost of Rs. 90,000 for printing and marketing., but each copy sold will net him Rs. 2. Based on the given information and the

decision analysis method, determine whether Mr. Shyam should accept the publisher's offer or publish the novel himself.

Course Outcome 4 (CO4): Explain the concepts of crashing and dummy activity in project management.

Course Outcome 5 (CO5): Derive the expression for the Economic order quantity (EOQ)?

Course Outcome 6 (CO6): Briefly explain the theories of Entrepreneurial motivation.?

Model Question Paper

QP CODE:

Reg No:_____

PAGES: 4

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR Course Code: HUT 310

Course name: Management for Engineers

Max Marks: 100

Duration: 3 Hours

PART-A (Answer All Questions. Each question carries 3 marks)

- 1. "Management is getting things done through other." Elaborate.
- 2. Comment on the true nature of management. Is it a science or an art?
- 3. Planning is looking ahead and controlling is looking back. Comment with suitable examples
- 4. Explain the process of communication?
- 5. Explain the hierarchy of objectives?
- 6. Explain the types of decisions?
- 7. Describe the Economic man model?
- 8. Explain the concepts of crashing and dummy activity in project management.
- 9. Differentiate the quantitative and qualitative methods in forecasting.

10. What are the key metrics for sustainability measurement? What makes the measurement and reporting of sustainability challenging?

PART-B (Answer any one question from each module)

- 11. a) Explain the systems approach to management. (10)
 - b) Describe the roles of a manager (4)

OR

12. a) Explain the 14 principles of administrative management? (10)

b) Explain the different managerial skills (4)

13. a) What are planning premises, explain the classification of planning premises. (10)

b) Distinguish between strategy and policy. How can policies be made effective. (4)

OR

14 a) Explain three motivational theories. (9)

b) Describe the managerial grid. (5)

15. a) Modern forest management uses controlled fires to reduce fire hazards and to stimulate new forest growth. Management has the option to postpone or plan a burning. In a specific forest tract, if burning is postponed, a general administrative cost of Rs. 300 is incurred. If a controlled burning is planned, there is a 50% chance that good weather will prevail and burning will cost Rs. 3200. The results of the burning may be either successful with probability 0.6 or marginal with probability 0.4. Successful execution will result in an estimated benefit of Rs. 6000, and marginal execution will provide only Rs. 3000 in benefits. If the weather is poor, burning will be cancelled incurring a cost of Rs. 1200 and no benefit. i) Develop a decision tree for the problem. (ii) Analyse the decision tree and determine the optimal course of action. (8)

b) Student tuition at ABC University is \$100 per semester credit hour. The Education department supplements the university revenue by matching student tuition, dollars per dollars. Average class size for typical three credit course is 50 students. Labour costs are \$4000 per class, material costs are \$20 per student, and overhead cost are \$25,000 per class. (a) Determine the total factor productivity. (b) If instructors deliver lecture 14 hours per week and the semester lasts for 16 weeks, what is the labour productivity? **(6)**

OR

16. a) An ice-cream retailer buys ice cream at a cost of Rs. 13 per cup and sells it for Rs. 20 per cup; any remaining unsold at the end of the day, can be disposed at a salvage price of Rs. 2.5 per cup. Past sales have ranged between 13 and 17 cups per day; there is no reason to believe that

sales volume will take on any other magnitude in future. Find the expected monetary value and EOL, if the sales history has the following probabilities: (9)

Market Size	13	14	15	16	17
Probability	0.10	0.15	0.15	0.25	0.35

b) At Modem Lumber Company, Kishore the president and a producer of an apple crates sold to growers, has been able, with his current equipment, to produce 240 crates per 100 logs. He currently purchases 100 logs per day, and each log required 3 labour hours to process. He believes that he can hire a professional buyer who can buy a better quality log at the same cost. If this is the case, he increases his production to 260 crates per 100 logs. His labour hours will increase by 8 hours per day. What will be the impact on productivity (measured in crates per labour-hour) if the buyer is hired? What is the growth in productivity in this case? **(5)**

Activity	Time (Days)	Immediate Predecessors
А	1	-
В	4	А
С	3	А
D	7	А
Е	6	В
F	2	C, D
G	7	E, F
Н	9	D
Ι	4	G, H

17. a) A project has the following list of activities and time estimates:

(a) Draw the network. (b) Show the early start and early finish times. (c) Show the critical path. (10)

b) An opinion survey involves designing and printing questionnaires, hiring and training personnel, selecting participants, mailing questionnaires and analysing data. Develop the precedence relationships and construct the project network. (4)

OR

18. a) The following table shows the precedence requirements, normal and crash times, and normal and crash costs for a construction project:

A _ 4	Immediate	Required T	ime (Weeks)	Cost (Rs.)		
Activity	Predecessors	Normal	Crash	Normal	Crash	
А	-	4	2	10,000	11,000	
В	А	3	2	6,000	9,000	
С	А	2	1	4,000	6,000	
D	В	5	3	14,000	18,000	
Е	B, C	1	1	9,000	9,000	
F	С	3	2	7,000	8,000	
G	E, F	4	2	13,000	25,000	
Н	D, E	4	1	11,000	18,000	
Ι	H, G	6	5	20,000	29,000	

Draw the network. (b) Determine the critical path. (c) Determine the optimal duration and the associated cost. (10)

b) Differentiate between CPM and PERT. (4)

19. a) What is meant by market segmentation and explain the process of market segmentation (8) b) The Honda Co. in India has a division that manufactures two-wheel motorcycles. Its budgeted sales for Model G in 2019 are 80,00,000 units. Honda's target ending inventory is 10,00, 000 units and its beginning inventory is 12, 00, 000 units. The company's budgeted selling price to its distributors and dealers is Rs. 40, 000 per motorcycle. Honda procures all its wheels from an outside supplier. No defective wheels are accepted. Honda's needs for extra wheels for replacement parts are ordered by a separate division of the company. The company's target ending inventory is 3,00,000 wheels and its beginning inventory is 2,00,000 wheels. The budgeted purchase price is Rs. 1,600 per wheel.

- (a) Compute the budgeted revenue in rupees.
- (b) Compute the number of motorcycles to be produced.

Compute the budgeted purchases of wheels in units and in rupees.? (6)

OR

20. a) a) "Human Resource Management policies and principles contribute to effectiveness, continuity and stability of the organization". Discuss. (b) What is a budget? Explain how sales budget and production budgets are prepared? (10)

b) Distinguish between the following: (a) Assets and Liabilities (b) Production concept and Marketing concept (c) Needs and Wants (d) Design functions and Operational control functions in operations (4)

Teaching Plan

Sl.No	TOPIC	SESSION
	Module I	
1.1	Introduction to management	1
1.2	Levels of managers and skill required	2
1.3	Classical management theories	3
1.4	neo-classical management theories	4
1.5	modern management theories	5
1.6	System approaches to Management,	6
1.7	Task and Responsibilities of a professional Manager	7
	Module 2	
2.1	Management process – planning	8
2.2	Mission – objectives – goals – strategy – policies – programmes	0
2.2	– procedures	9
2.3	Organizing, principles of organizing, organization structures	10
2.4	Directing, Leadership	11
2.5	Motivation, Controlling	12
	Module III	
3.1	Concept of productivity and its measurement Competitiveness	13
3.2	Decision making process;	14
3.3	Models in decision making	15
3.4	Decision making under certainty and risk	16
3.5	Decision making under uncertainty	17
3.6	Decision trees	18
3.7	Models of decision making.	19
	Module IV	
4.1	Project Management	20

Sl.No	ΤΟΡΙΟ	SESSION
	Module I	
4.2	Network construction	21
4.3	Arrow diagram, Redundancy	22
4.4	CPM and PERT Networks	23
4.5	Scheduling computations	24
4.6	PERT time estimates	25
4.7	Probability of completion of project	26
4.8	Introduction to crashing	
	Module V	
5.1	Introduction to functional areas of management,	28
5.2	Operations management	29
5.3	Human resources management,	30
5.4	Marketing management	31
5.5	Financial management	32
5.6	Entrepreneurship,	33
5.7	Business plans	34
5.8	Corporate social responsibility, Patents and Intellectual property rights	35