B.Tech 2024 – S1/S2

FIRST YEAR SYLLABUS (GROUP C)

B.Tech 2024 – S1/S2

SEMESTER 1

GROUP A - (Physical Science)

- BTech Civil Engineering CE
- BTech Mechanical Engineering ME

SEMESTER S1

MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE - 1

(Groups B & C)

Course Code	GYMAT101	CIA Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	ESE Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic knowledge in single variable calculus and matrix operations.	Course Type	Theory

Course Objectives:

1. To provide a comprehensive understanding and basic techniques of matrix theory to analyze linear systems.

2.To offer advanced knowledge and practical skills in solving second-order ordinary differential equations, applying Laplace transforms, and understanding Fourier series, enabling students to analyze and model dynamic systems encountered in engineering disciplines effectively.

Module	Svllabus	Contact
No.	Description	Hours
1	Linear systems of equations: Gauss elimination, Row echelon form, Linear Independence: rank of a matrix, Solutions of linear systems: Existence, Uniqueness (without proof), The matrix Eigen Value Problem, Determining Eigen values and Eigen vector, Diagonalization of matrices. (Text 1: Relevant topics from sections 7.3, 7.4, 7.5, 8.1, 8.4)	9

2	Homogeneous linear ODEs of second order, Superposition principle, General solution, Homogeneous linear ODEs of second order with constant coefficients (Method to find general solution, solution of linear Initial Value Problem). Non homogenous ODEs (with constant coefficients) - General solution, Particular solution by the method of undetermined coefficients (Particular solutions for the functions $ke^{\gamma x}$, kx^n , $kcos\omega x$, $ksin\omega x$, $ke^{\alpha x}cos\omega x$, $ke^{\alpha x}sin\omega x$), Initial value Problem for Non-Homogeneous Second order linear ODE(with constant coefficients), Solution by variation of parameters (Second Order). (Text 1: Relevant topics from sections 2.1, 2.2, 2.7, 2.10)	9
3	Laplace Transform, Inverse Laplace Transform, Linearity property, First shifting theorem, Transform of derivatives, Solution of Initial value problems by Laplace transform (Second order linear ODE with constant coefficients with initial conditions at t=0 only), Unit step function, Second shifting theorem, Dirac delta function and its transform (Initial value problems involving unit step function and Dirac delta function are excluded), Convolution theorem (without proof) and its application to finding inverse Laplace transform of products of functions. (Text 1: Relevant topics from sections 6.1, 6.2, 6.3, 6.4, 6.5)	9
4	Taylor series representation (without proof, assuming the possibility of power series expansion in appropriate domains), Maclaurin series representation, Fourier series, Euler formulas, Convergence of Fourier series (Dirichlet's conditions), Fourier series of 2π periodic functions, Fourier series of 2/ periodic functions, Half range sine series expansion, Half range cosine series expansion. (Text 1: Relevant topics from sections 11.1, 11.2, Text 2: Relevant topics from section 10.8)	9

Course Assessment Method (CIA: 40 marks, ESE: 60 marks)

Continuous Internal Assessment Marks (CIA):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Written)	Total
5	15	5	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A Part B Iotal

•	2 Questions from	•	Each question carries 9 marks.	
	each module.	•	Two questions will be given from each	
•	Total of 8 Questions,		module, out of which 1 question should be	
	each carrying 3 marks		answered.	60
	(8x3 =24marks)	•	Each question can have a maximum of 3sub	
			divisions.	
			(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledg e Level (KL)
CO1	Solve systems of linear equations and diagonalize matrices.	К3
CO2	Solve homogeneous and non-homogeneous linear differential equation with constant coefficients.	КЗ
CO3	Compute Laplace transform and apply it to solve ODEs arising in engineering.	К3
CO4	Determine the Taylor series and evaluate Fourier series expansion for different periodic functions.	КЗ

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

	Text Books								
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition,2016					
2	Calculus	H.Anton,I.Biven,S.Davis	Wiley	12 th edition,2024					

	Reference Books								
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Thomas' Calculus	Maurice D. Weir, Joel Hass, Christopher Heil, Pearson Przemyslaw Bogacki		15 th edition, 2023					
2	Essential Calculus	J. Stewart	Cengage	2 nd edition, 2017					
3	Elementary Linear Algebra	Howard Anton, Chris Rorres	Wiley	11 th edition, 2019					
4	Bird's Higher Engineering Mathematics	John Bird	Taylor & Francis	9 th edition, 2021					
5	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023					
6	Calculus	H. Anton, I. Biven, S.Davis	Wiley	12 th edition, 2024					
7	Signals and Systems	Simon Haykin, Barry Van Veen	Wiley	2 nd edition, 2002					

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/111/107/111107164/				
2	https://archive.nptel.ac.in/courses/111/104/111104031/				
3	https://archive.nptel.ac.in/courses/111/106/111106139/				
4	https://archive.nptel.ac.in/courses/111/101/111101164/				

SEMESTER S1/S2

PHYSICS FOR PHYSICAL SCIENCE

(Groups C)

Course Code	GCPHT121	CIA Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	ESE Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory + Lab

Course Objectives:

- 1. To provide students with a solid background in the fundamentals of Physics and impart this knowledge in Physical Science and Life Science disciplines.
- 2. To develop scientific attitudes and enable students to correlate Physics concepts with their core programs.

3. To equip students with practical knowledge that complements their theoretical studies and develop their ability to create practical applications and solutions in engineering based on their understanding of Physics.

Module		Contact			
No.	Syllabus Description				
1	Laser & Fibre Optics Optical processes – Absorption-Spontaneous emission and stimulated emission, Principle of laser - conditions for sustained lasing – Population inversion- Pumping- Metastable states, Basic components of laser - Active medium - Optical resonant cavity, Construction and working of Ruby laser and CO2 laser, Construction and working Semiconductor laser (qualitative), Properties of laser. Applications of laser.	9			
	Optic fibre-Principle of propagation of light, Types of fibres-Step index and Graded index fibres - Multimode and single mode fibers, Acceptance angle, Numerical aperture –Derivation, Applications of optical fibres - Fibre optic communication system (block diagram)				
	Interference and Diffraction	0			
	Introduction, Principle of super position, Constructive and destructive interference, Optical path, Phase difference and path difference, Cosine law-	9			

2	 reflected system- Condition for constructive and destructive interference, Colours in thin films, Newton's Rings-Determination of refractive index of transparent liquids and wavelength, Air wedge- Measurement of thickness of thin sheets. Diffraction-types of diffraction, Diffraction due to a single slit, Diffraction grating – Construction - grating equation, Dispersive and Resolving Power (qualitative). 	
3	Quantum Mechanics Introduction, Concept of uncertainty and conjugate observables (qualitative), Uncertainty principle (statement only), Application of uncertainty principle- Absence of electron inside nucleus - Natural line broadening, Wave function – properties - physical interpretation, Formulation of time dependent and time independent Schrodinger equations, Particle in a one- dimensional box - Derivation of energy eigen values and normalized wave function, Quantum Mechanical Tunnelling (qualitative)	9
4	 Waves & Acoustics Waves- transverse and longitudinal waves, Concept of frequency, wavelength and time period (no derivation), Transverse vibrations in a stretched string- derivation of velocity and frequency - laws of transverse vibration. Acoustics- Reverberation and echo, Reverberation time and its significance - Sabine's Formula, Factors affecting acoustics of a building. Ultrasonics-Piezoelectric oscillator, Ultrasonic diffractometer, SONAR, NDT-Pulse echo method, medical application-Ultrasound scanning (qualitative) 	9

Course Assessment Method (CIA: 40 marks, ESE: 60 marks)

Continuous Internal Assessment Marks (CIA):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination- 3 (Written)	Internal Examination- 4 (Lab Examination)	Total
5	10	5	10	5	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each module.	Each question carries 9 marks.	
• Total of 8 Questions, each carrying 3 marks	 Two questions will be given from each module, out of which 1 question should be answered. 	60
(8x3 =24marks)	 Each question can have a maximum of 3 subdivisions. 	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Describe the basic principles and properties of laser and optic fibers.	К2			
CO2	Describe the phenomena of interference and diffraction of light.	К2			
	Describe the behaviour of matter in the atomic and subatomic				
CO3	level through the principles of quantum mechanics.	К2			
CO4	Apply the knowledge of waves and acoustics in non-destructive testing and in acoustic design of buildings.	КЗ			
	Apply basic knowledge of principles and theories in physics to	K3			
CO5	conduct experiments.	CN			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3											3
CO3	3											3
CO4	3	3										3
CO5	3	3			3				2			3

	Text Books						
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	A Textbook of Engineering Physics	M N Avadhanulu, P G Kshirsagar & TVS ArunMurthy	S Chand & Co.	2 nd Edition, 2019			
2	Engineering Physics	H K Malik , A.K. Singh,	McGraw Hill Education	2 nd Edition, 2017			
3	Optics	Ajoy Ghatak	Mc Graw Hill Education	6 th Edition, 2017			

	Reference Books						
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering Physics	G Vijayakumari	Vikas Publications	8 th Edition, 2014			
2	Concepts of Modern Physics	Arthur Beiser	Tata McGraw Hill Publications	6th Edition 2003			
3	Engineering Physics	Aruldhas G.	PHI Pvt. Ltd	2 nd Edition, 2015			
4	Fiber Optic Communications	Gerd Keiser	Springer	2021			
5	A Text Book of Engineering physics	I. Dominic, A. Nahari	OWL Publications	2 nd Edition, 2016			
6	Advanced Engineering Physics	Premlet B	Phasor Books				
7	Engineering Physics	Rakesh Dogra	Katson Books	1 st Edition, 2019			

Video Links (NPTEL, SWAYAM)			
Module No	Link ID		
1	https://nptel.ac.in/courses/115102124 https://nptel.ac.in/courses/104104085		
2	https://nptel.ac.in/courses/115105537		
3	https://nptel.ac.in/courses/115102023 https://nptel.ac.in/courses/115101107		
4	https://nptel.ac.in/courses/112104212 https://nptel.ac.in/courses/124105004		

1. <u>Continuous Assessment (10 Marks)</u>

i. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

ii. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

iii. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

iv. Viva Voce (3 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

2. Assessment Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programming task

2. Result (2 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- 3. Viva Voce (1 Marks)
 - Proficiency in answering questions related to theoretical and practical aspects of the subject.

Experiment	Experiments
No.	(Minimum 10 Experiments)
1	Optical fiber characteristics- Measurement of Numerical aperture.
2	Determination of wavelength of Laser using diffraction grating.
3	Measure the wavelength of Laser using a millimetre scale as a grating.
4	Determination of wavelength of a monochromatic light using Newton's Rings method.
5	Determination of diameter of wire or thickness of thin sheet using Air wedge method.
6	Determination of slit width (diffraction due to a single slit).
7	Measure wavelength of light source using diffraction grating.
8	Determination of resolving power and dispersive power of grating.
9	Characteristics of LED.
10	CRO basics-Measurement of frequency and amplitude of wave forms.
11	Solar Cell- I V and Intensity Characteristics.
12	Melde's experiment- Frequency calculation in Transverse and Longitudinal Mode.
13	LCR circuit –forced and damped harmonic oscillations.
14	Determination of wavelength and velocity of ultrasonic waves using ultrasonic diffractometer.
15	Determination of particle size of lycopodium powder.

Experiment List

SEMESTER S1/S2

CHEMISTRY FOR PHYSICAL SCIENCE

(Group C)

Course Code	GCCYT122	CIA Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:2:0	ESE Marks	60
Credits	4	ESE Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory+ Lab

Course Objectives:

- **1.** To equip students with a thorough understanding of chemistry concepts relevant to engineering applications.
- **2.** To familiarize students with applied topics such as spectroscopy, electrochemistry, and instrumental methods.
- **3.** To raise awareness among students about environmental issues, including climate change,

pollution, and waste management, and their impact on quality of life.

Module	Syllabus Description	Contact
No.		Hours
1	 Engineering Materials Fuels: Calorific value – HCV and LCV – Experimental determination of calorific value of solid fuels. Analysis of coal – Proximate analysis- Octane &Cetane Number. Biofuels- Biodiesel-Green Hydrogen. Lubricants: Classification - Solid, Semisolid and Liquid lubricants. Properties of lubricants - Viscosity Index, Flash point, Fire point, Cloud Point, Pour Point & Aniline Point. Cement: Manufacture of Portland cement – Theory of setting and hardening of cement. Nanomaterials: Classification based on Dimension & Materials- Synthesis – Sol gel & Chemical Reduction - Applications of nanomaterials – Supercapacitor Materials - Carbon Nanotubes, Fullerenes & Graphene – structure, properties & application. 	9

D'	Tooh	2024	\$1/\$2
D.	recn	2024	-01/02

	<u>B.Tech 2024 – S1/S2</u>						
	Polymers: ABS & Kevlar - Synthesis, properties and applications-						
	Conducting Polymers- Classification – Application.						
2	Electrochemistry and Corrosion Science Electrochemical Cell- Electrode potential- Nernst equation for single electrode and cell (Numerical problems)- Reference electrodes – SHE & Calomel electrode –Construction and Working - Electrochemical series - Applications – Glass Electrode & pH Measurement- Conductivity- Measurement using Digital conductivity meter. Li-ion battery & H ₂ -O ₂ fuel cell (acid electrolyte only) construction and working. Corrosion –Electrochemical corrosion mechanism (acidic & alkaline medium) Galvanic series - Corrosion control methods - Cathodic Protection - Sacrificial anodic protection and impressed current cathodic protection –Electroplating of copper - Electroless plating of copper	9					
	Instrumental Methods of Analysis						
3	Molecular Spectroscopy: Types of spectra- Molecular energy levels - Beer Lambert's law – Numerical problems - Electronic Spectroscopy – Principle, Types of electronic transitions – Role of Conjugation in absorption maxima - Instrumentation-Applications – Vibrational spectroscopy – Principle- Number of vibrational modes - Vibrational modes of CO ₂ and H ₂ O – Applications Thermal analysis: –TGA- Principle, instrumentation (block diagram) and applications – TGA of CaC ₂ O ₄ .H ₂ O and polymers. DTA- Principle, instrumentation (block diagram) and applications - DTA of CaC ₂ O ₄ .H ₂ O. Chromatography-Gas Chromatography-Principle- Instrumentation- Application – Analysis of chemical composition of exhaust gases. Electron Microscopic Techniques: SEM - Principle, instrumentation and Applications.	9					
	Environmental Chemistry						
4	Water characteristics - Hardness - Types of hardness- Temporary and Permanent - Disadvantages of hard water -Degree of hardness (Numericals) Water softening methods-Ion exchange process- Principle, procedure and advantages. Reverse osmosis – principle, process and advantages. – Water disinfection methods – chlorination- Break point chlorination, ozone and UV irradiation. Dissolved oxygen (DO), BOD and COD- Definition & Significance Waste Management: Air Pollution- Sources & Effects- Greenhouse Gases- Ozone depletion. Control methods. Sewage water treatment- Primary, Secondary and Tertiary - Flow diagram -Trickling filter and UASB process. Solid waste-disposal methods- Composting, Landfill & Incineration.	9					

Course Assessment Method (CIA: 40 marks, ESE: 60 marks)

Continuous Internal Assessment Marks (CIA):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination- 3 (Written)	Internal Examination- 4 (Lab Examination)	Total
5	10	5	10	5	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from 	Each question carries 9 marks.	
each module.	 Two questions will be given from each 	
• Total of 8 Questions,	module, out of which 1 question should be	
Each carrying 3 marks	answered.	
	• Each question can have a maximum of 3	
(8x3 =24marks)	subdivisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
	Describe the use of various engineering materials in different	
CO1	industries.	К2
	Explain the Basic Concepts of Electrochemistry and Corrosion to	
CO2	Explore the Possible Applications in Various Engineering Fields.	К2
	Use appropriate analytical techniques for different engineering	
CO3	materials	К3
CO4	Outline various water treatment and waste management methods	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

B.Tech 2024 –*S1/S2*

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3				2	3					2

Text Books								
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering Chemistry	B. L. Tembe, Kamaluddin, M. S. Krishnan	NPTEL Web-book	2018				
2	Physical Chemistry	P. W. Atkins	Oxford University Press	International Edition- 2018				
3	Instrumental Methods of Analysis	H. H. Willard, L. L. Merritt	CBS Publishers	7th Edition- 2005				
4	Engineering Chemistry	Jain & Jain	Dhanpath Rai Publishing Company	17 th Edition - 2015				

Reference Books							
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fundamentals of Molecular Spectroscopy	C. N. Banwell	McGraw-Hill	4 th edn. <i>,</i> 1995			
2	Principles of Physical Chemistry	B. R. Puri, L. R. Sharma, M. S. Pathania	Vishal Publishing Co	47th Edition, 2017			
3	Introduction to Spectroscopy	Donald L. Pavia	Cengage Learning India Pvt. Ltd	2015			
4	Polymer Chemistry: An Introduction	Raymond B. Seymour, Charles E. Carraher	Marcel Dekker Inc	4th Revised Edition,1996			
5	The Chemistry of Nanomaterials: Synthesis, Properties and Applications	Prof. Dr. C. N. R. Rao, Prof. Dr. h.c. mult. Achim Müller, Prof. Dr. A. K. Cheetham	Wiley-VCH Verlag GmbH & Co. KGaA	2014			
6	Organic Electronics Materials and Devices	Shuichiro Ogawa	Springer Tokyo	2024			
7	Principles and Applications Of Thermal Analysis	Gabbot, P	Oxford: Blackwell Publishing	2008			

Video Links (NPTEL, SWAYAM)				
SI No.	Link ID			
1	https://archive.nptel.ac.in/courses/104/106/104106137/ https://archive.nptel.ac.in/courses/113/105/113105102/ https://archive.nptel.ac.in/courses/113/104/113104082/			
	https://www.youtube.com/watch?v=BeSxFLvk1h0			
2	https://archive.nptel.ac.in/courses/113/104/113104102/ https://archive.nptel.ac.in/courses/104/105/104105124/ https://archive.nptel.ac.in/courses/105/104/105104157/			

Continuous Assessment (10 Marks)

Continuous assessment evaluations are conducted based on laboratory associated with the theory.

Mark distribution

1. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

2. Viva Voce (3 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Assessment Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

2. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

Expt. Nos.	Experiment (Minimum 10 experiments)
1	Estimation of iron in iron ore
2	Estimation of copper in brass
3	Determination of cell constant and conductance of solutions
4	Calibration of pH meter and determination of pH of a solution
	Synthesis of polymers
	(a) Urea-formaldehyde resin
5	(b) Phenol-formaldehyde resin
	Determination of wavelength of absorption maximum and colorimetric estimation of
6	Fe ³⁺ in solution
	Determination of molar absorptivity of a compound (KMnO4 or any water-soluble
7	food colorant)
8	Analysis of IR spectra

List of Experiments

9	Identification of drugs using TLC
10	Estimation of total hardness of water-EDTA method
11	Estimation of dissolved oxygen by Winkler's method
12	Determination of calorific value using Bomb calorimeter
13	Determination of saponification value of a given vegetable oil
14	Determination of acid value of a given vegetable oil
15	Verification of Nernst equation for electrochemical cell.

-

SEMESTER S1

ENGINEERING MECHANICS

(Group C)

Course Code	GCEST103	CIA Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	3	ESE Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. The course aims to enable students to analyse and solve fundamental mechanics problems

Module		Contact			
No.	Syllabus Description	Hours			
1	Introduction to statics: introduction to branches of mechanics, concept of rigid body scalars and vectors, vector operations. Basic Principles of Statics (Concepts only. No need to include problems related to these principles) – Newton's First Law or Law of Inertia, Law of Action and Reaction (Newton's Third Law), The Gravitational Law of Attraction, Parallelogram Law of Forces, Equilibrium Laws (Equilibrium for a body with two forces, Equilibrium for a body with three forces, Law of Triangle of Forces, and Lami's Theorem), Principle of Transmissibility of				
	Force systems: rectangular components in 2D and 3D, moment and couple, resultants. Equilibrium: system isolation and the free-body diagram, equilibrium conditions 2D and 3D, Support reactions of beams (point load and UDL only), forces in space (Only concurrent system of forces in space)				
2	Friction: -laws of friction – analysis of blocks and ladder Centroid of composite areas- – moment of inertia- parallel axis and perpendicular axis theorems. Polar moment of inertia, radius of gyration, mass moment of inertia-ring and disc	10			
3	Dynamics – rectilinear translation - equations of motion in kinematics and kinetics – D'Alembert's principle. –motion on horizontal and inclined surfaces, motion of connected bodies	8			
4	Curvilinear translation - equations of kinematics projectile motion (solution starting from differential equations) Rotation – kinematics of rotation- equation of motion for a rigid body rotating about a fixed axis –rotation under a constant moment	8			

Course Assessment Method

(CIA: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIA):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Written)	Total
5	15	5	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply fundamental principles of mechanics to solve engineering problems involving forces and motion.	К3
CO2	Identify principle of statics to determine support reactions, force systems, and equilibrium conditions.	КЗ
CO3	Use friction laws and moment of inertia concepts to find the stability and motion of bodies on various surfaces.	К3
CO4	Administer dynamics principles to solve problems related to rectilinear motion and the motion of connected bodies.	К3
CO5	Select appropriate kinematic equations to solve curvilinear motion problems and analyze the rotational motion of rigid bodies.	КЗ

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2									2
CO2	3	2	2									2
CO3	3	2	2									2
CO4	3	2	2									2
CO5	3	2	2									2

	Text Books							
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering Mechanics	Timoshenko and Young	McGraw Hill Publishers	5 th Edition 2017				
2	Engineering Mechanics: Combined Statics and Dynamics	Russell C. Hibbeler	Pearson Education,	14 th Edition 2015				
3	Engineering Mechanics - Statics and Dynamics,	Shames, I. H.	Prentice Hall ofIndia.	4 th Edition 2008				
4	Textbook of Engineering Mechanics	R. K. Bansal	Laxmi publications pvt ltd.	4 th Edition 2016				

	Reference Books							
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering Mechanics Statics	J. L. Meriam, L. G.	Wiley	9 th Edition 2020				
2	Engineering Mechanics	Kraige	PHI Learning	2011				

Video Links (NPTEL, SWAYAM)				
	Link ID			
1	https://nptel.ac.in/courses/112106286			

SEMESTER S1

INTRODUCTION TO MECHANICAL ENGINEERING & CIVIL ENGINEERING

(Group C)

Course Code	GCEST104	CIA Marks	40
Teaching Hours/Week (L: T:P: R)	4-0-0-0	ESE Marks	60
Credits	4	ESE Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** Understand thermodynamic cycles and working of IC engines.
- 2. Understand the refrigeration cycles and psychrometric concepts.
- **3.** Understand the relevance of civil engineering and its various disciplines.
- 4. Describe the relevance of various building codes and types of buildings as per NBC.
- 5. Understand different building components and building materials.

Module No.	Syllabus Description	Contact Hours
1	 General introduction to Mechanical Engineering: Scope of Thermodynamics, Approaches in Thermodynamics; Thermodynamic Fundamentals - System; Open, Closed and Isolated; Boundary, Surroundings; Property; State; Process; Cycles-Carnot Cycle -Derivation of efficiency (problems on efficiency) Otto, Diesel cycles (no derivation of efficiency and problems); Basic laws of TD (Statements Only) IC Engines: CI & SI Engines, working of 2-Stroke & 4-Stroke engines. Listing the parts of IC Engines. Concept of CRDI, MPFI and hybrid engines. Refrigeration: Unit of refrigeration, reversed Carnot cycle, COP, vapour compression cycle (only description and no problems); Definitions of dry, wet & dew point temperatures, specific humidity and relative humidity, Psychrometric chart, Cooling and dehumidification, Layout of central air conditioning systems. 	12

	Classification of pumps, Description about working with sketches of: Reciprocating pump, Centrifugal pump. Classification of Hydraulic Turbines	
	Different type of gears and its applications (spur belical bevel worm	
	and worm wheel) List types of clutches and their use. Bearings and their	
	classification (Journal bearing and ball bearing)	
	Manufacturing Process: Sand Casting Forging Rolling Extrusion Metal	
	Joining Processes: List types of welding Description with sketches of Arc	
2	Welding SMAW Soldering and Brazing and their applications	
	Machining processes: Description and operations performed on Lathe	9
	Drilling machine. Milling machine. CNC machine. 3D	
	printing.	
	General Introduction to Civil Engineering: Relevance of Civil	
	Engineering in the overall infrastructural development of the country.	
	Brief introduction to major disciplines of Civil Engineering like	
	Structural Engineering, Geo-technical Engineering, Transportation	
	Engineering, Water Resources Engineering and Environmental	
	Engineering.	
	Introduction to buildings: Types of buildings according to character of	
	occupancy as per NBC, Load bearing and non-load bearing building	
	structures, components of a residential building and their functions	
3	(concept only).	9
	Selection of site for a residential building.	
	Building Area Definitions: Built up area, Plinth area, Floor area, Carpet	
	area and Floor area ratio of a building as per KBR.	
	Building rules and regulations: Relevance of NBC, KBR &CRZ norms (brief	
	discussion of relevance only).	
	Conventional construction materials: Brick, stone, sand, cement and	
	timber- classifications, Qualities, Tests and Uses of construction	
	types	
4	types.	
	Tests on fresh and hardened concrete - slump test, cube compressive	9
	strength as per IS Codes.	
	Steel: Structural steel sections and steel reinforcements – types and	
	uses.	
	Soil-Origin of soil-weathering of rocks, types of weathering	

Course Assessment Method (CIA: 40 marks, ESE: 60 marks)

Continuous Internal Assessment Marks (CIA):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Written)	Total
5	15	5	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
 Total of 8 Questions, each 	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the different thermodynamic cycles and compare these cycles in the context of operational characteristics and efficiencies.	КЗ
CO2	Illustrate the working and features of IC Engines and modern advancements in the field of Automobiles.	К2
CO3	Explain the basic principles of Refrigeration and Air Conditioning.	К2
CO4	Apply knowledge to describe the functioning of hydraulic machines	К2
CO5	Explain the working of power transmission elements	

		K2
CO6	Explain the basic manufacturing, metal joining, conventional machining processes and modern manufacturing techniques	К2
CO7	Understand the relevance of civil engineering and its various disciplines.	К2
CO8	Describe the relevance of various building codes and types of buildings as per NBC	К2
CO9	Understand different building components and building materials.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	-	3	3	-	-	-	-	2
CO2	3	-	-	-	-	-	-	-	-		-	2
CO3	3	-	-	-	-	-	-	-	-	-	-	2
CO4	3	-	-	-	-	-	-	-	-	-	-	2
CO5	3	-	-	-	-	-	-	-	-	-	-	2
CO6	3	-	-	-	-	-	-	-	-	-	-	2
CO7	3	-	-	-	-	-	-	-	-	-	-	-
CO8	3	-	-	-	-	-	-	2	-	-	-	2
CO9	3	-	-	-	-	-	-	-	-	-	-	2

	Text Books						
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Basic Mechanical Engineering	Pravin Kumar	Pearson Education	1 st Edition,2013			
2	A Textbook of Basic Mechanical Engineering	R.K. Rajput	Laxmi Publications	3 rd Edition,2017			
3	Elements of Mechanical Engineering	K.P. Roy, S.K. Hajra Choudhury, A.K. Hajra Choudhury	Media Promoters & Publishers Pvt. Ltd.	Revised Edition, 2012			
4	Fundamentals of Mechanical Engineering	G.S. Sawhney	PHI Learning Pvt. Ltd.	1 st Edition,2013			
5	Essentials of Civil Engineering	Dalal K R	Charotar Publishing house	1 st Edition 2012			
6	Engineering Materials (Material Science)	Rangwala S C	Charotar PublishingHouse Pvt Limited	43 rd Edition2019			
7	Building Materials	Duggal S K	New Age International	5 th Edition2019			

Reference Books							
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives	Chris Mi and M. Abul Masrur	John Wiley & Sons	2nd Edition, 2017			
2	Automotive Engineering Fundamentals	Richard Stone and Jeffrey K. Ball	SAE International	1 st Edition, 2004			
3	Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct	lan Gibson, David W. Rosen, and Brent Stucker	Springer	2 nd Edition, 2015			
4	Digital Manufacturing Heating, Ventilating, and Air Conditioning Analysis and Design	Faye C. McQuiston, Jerald D. Parker, and Jeffrey D. Spitler	John Wiley & Sons	6 th Edition, 2005			
5	Materials for Civil and Construction Engineering	Mamlouk, M.S.,and Zaniewski, J.P	Pearson Publishers	4 th Edition, 2017			
6	Building Construction	Rangwala, S.C and Dalal, KB	Charotar Publishing house	34 th Edition 2022			
7	Construction Technology Vol.I to IV	Chudley, R	Longman group, England Course Plan	2 nd Edition 2014			
8	Building Construction Volumes1to4	Mckay, W.B.and Mckay,J.K	Pearson India Education Services	5 th Edition			
9	Engineering Geology	Duggal S. K., Pandey H.K. and Rawat N,	Mcgraw Hill Education, New Delhi	1 st Edition 2017			
10	Latest Building codes and related rules and regulations.						

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/112/105/112105123/ https://nptel.ac.in/courses/112/106/112106133/ https://nptel.ac.in/courses/112/105/112105129/					
2	https://nptel.ac.in/courses/112/105/112105171/ https://nptel.ac.in/courses/112/105/112105268/ https://archive.nptel.ac.in/courses/112/107/112107145					
3	https://archive.nptel.ac.in/courses/105/106/105106201/					
4	https://archive.nptel.ac.in/courses/105/106/105106206/					

SEMESTER S1

ALGORITHMIC THINKING WITH PYTHON

Course Code UCEST105 **CIA Marks** 40 **Teaching Hours/Week** 60 3:0:2:0 **ESE Marks** (L: T:P: R) 4 Credits **ESE Hours** 2 Hrs. 30 Min. Prerequisites (if any) None Course Type Theory

(Common to All Groups)

Course Objectives:

- **1.** To provide students with a thorough understanding of algorithmic thinking and its practical applications in solving real-world problems.
- 2. To explore various algorithmic paradigms, including brute force, divide-and-conquer, dynamic programming, and heuristics, in addressing and solving complex problems.

Module	Cullebus Description	Contact
No.	Syllabus Description	Hours
	PROBLEM-SOLVING STRATEGIES: - Problem-solving strategies defined, Importance of understanding multiple problem-solving strategies, Trial and Error, Heuristics, Means-Ends Analysis, and Backtracking (Working backward).	
	THE PROBLEM-SOLVING PROCESS: - Computer as a model of computation, Understanding the problem, Formulating a model, Developing an algorithm, Writing the program, Testing the program, and Evaluating the solution.	
	ESSENTIALS OF PYTHON PROGRAMMING: - Creating and using variables in Python, Numeric and String data types in Python, Using the math module, Using the Python Standard Library for handling basic I/O - print, input, Python operators	
1	and their precedence.	7

	ALGORITHM AND PSEUDOCODE REPRESENTATION: - Meaning and	
	Definition of Pseudocode, Reasons for using pseudocode, The main constructs of pseudocode - Sequencing, selection (if-else structure, case structure) and repetition (for, while, repeat-until loops), Sample problems*	
	FLOWCHARTS** :- Symbols used in creating a Flowchart - start and end, arithmetic calculations, input/output operation, decision (selection), module name (call), for loop (Hexagon), flow-lines, on-page connector, off-page connector.	
2	* - Evaluate an expression, d=a+b*c , find simple interest, determine the larger of two numbers, determine the smallest of three numbers, determine the grade earned by a student based on KTU grade scale (using if-else and case structures), print the numbers from 1 to 50 in descending order, find the sum of n numbers input by the user (using all the three loop variants), factorial of a number, largest of n numbers (Not to be limited to these exercises. More can be worked out if time permits).	
		9
	** Only for visualizing the control flow of Algorithms. The use of tools like RAPTOR	
	(<u>https://raptor.martincarlisle.com/</u>) is suggested. Flowcharts for the sample problems	
	listed earlier may be discussed	
	SELECTION AND ITERATION USING PYTHON: - if-else, elif, for loop, range, while loop.	
	Sequence data types in Python - list, tuple, set, strings, dictionary, Creating and using	
	DECOMPOSITION AND MODUL ARIZATION* Problem decomposition as a strategy for	
	solving complex problems, Modularization, Motivation for modularization, Defining and	10
3	using functions in Python, Functions with multiple return values	10
	RECURSION: - Recursion Defined, Reasons for using Recursion, The Call Stack, Recursion	
	and the Stack, Avoiding Circularity in Recursion, Sample problems - Finding the nth	
	FIDONACCI NUMBER, greatest common divisor of two positive integers, the factorial of a positive integer, adding two positive integers, the sum of digits of a positive number **.	

	 * The idea should be introduced and demonstrated using Merge sort, the problem of returning the top three integers from a list of n>=3 integers as examples. (Not to be limited to these two exercises. More can be worked out if time permits). ** Not to be limited to these exercises. More can be worked out if time permits. 	
	COMPUTATIONAL APPROACHES TO PROBLEM-SOLVING	
	(Introductory diagrammatic/algorithmic explanations only. Analysis not required) :- Brute-force Approach - - Example: Padlock, Password guessing	
	Divide-and-conquer Approach -	
	- Example: The Merge Sort Algorithm	
	- Advantages of Divide and Conquer Approach	
	 Disadvantages of Divide and Conquer Approach Dynamic Programming Approach Example: Fibonacci series 	
4	 Recursion vs Dynamic Programming Greedy Algorithm Approach Example: Given an array of positive integers each indicating the completion time for a task, find the maximum number of tasks that can be completed in the limited amount of time that you have. Motivations for the Greedy Approach 	10
	- Characteristics of the Greedy Algorithm	
	 Greedy Algorithms vs Dynamic Programming Randomized Approach Example 1: A company selling jeans gives a coupon for each pair of jeans. There are n different coupons. Collecting n different coupons would give you free jeans. How many jeans do you expect to buy before getting a free one? 	
	 Example 2: n people go to a party and drop off their hats to a hat-check person. When the party is over, a different hat-check person is on duty and returns the n hats randomly back to each person. What is the expected number of people who get back their hats Motivations for the Randomized Approach 	

Course Assessment Method (CIA: 40 marks, ESE: 60 marks)

Continuous In	nternal .	Assessment	Marks	(CIA):
----------------------	-----------	------------	-------	--------

Attendance	Continuous Assessment (Accurate Execution of Programming Tasks)	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination- 3 (Written)	Internal Examination- 4 (Lab Examination)	Total
5	10	5	10	5	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	 Two questions will be given from each module, out 	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	
(8x3 =24marks)	divisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Utilize computing as a model for solving real-world problems.	К2
CO2	Articulate a problem before attempting to solve it and prepare a clear and accurate model to represent the problem.	КЗ
СОЗ	Use effective algorithms to solve the formulated models and translate algorithms into executable programs.	КЗ
CO4	Interpret the problem-solving strategies, a systematic approach to solving computational problems, and essential Python programming skills	К2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

Reference Books						
SI. No	Title of the Book	Name of the	Name of the	Edition and Year		
		Author/s	Publisher			
1	Problem solving &	Maureen Sprankle, Jim	Pearson	2012		
	programming concepts	Hubbard				
2	How to Solve It: A New	George Pólya	Princeton University 2015			
	Aspect of Mathematical		Press			
	Method					
	Creative Problem Solving:	Donald Treffinger., Scott				
3	An Introduction	Isaksen, Brian Stead-	Prufrock Press	2005		
		Doval				
		Spielman, R. M.,				
4	Psychology (Sec Problem	Dumper, K., Jenkins, W.,	H5P Edition	2021		
	Solving.)	Lacombe, A., Lovett, M.,				
		& Perlmutter, M				
5	Computer Arithmetic	Koren, Israel	AK Peters/CRC Press 20			
	Algorithms					
6	Introduction to Computation	Guttag John V	PHI	2/e., 2016		
	and Programming using					
	Python					
7	Python for Everyone	Cay S. Horstmann,	Wiley	3/e, 2024		
		Rance D. Necaise				
	Computational Thinking: A	G Venkatesh	Mylspot Education	2020		
8	Primer for Programmers and	Madhavan Mukund	Services Pvt Ltd			
	Data Scientists					

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	https://opentextbc.ca/h5ppsychology/chapter/problem-solving/				
2	https://onlinecourses.nptel.ac.in/noc21_cs32/preview				

1. Continuous Assessment (5 Marks)

Accurate Execution of Programming Tasks

- Correctness and completeness of the program
- Efficient use of programming constructs
- Handling of errors
- Proper testing and debugging

2. Evaluation Pattern for Lab Examination (10 Marks)

1. Algorithm (2 Marks)

Algorithm Development: Correctness and efficiency of the algorithm related to the question.

2. Programming (3 Marks)

Execution: Accurate execution of the programming task.

3. Result (3 Marks)

Accuracy of Results: Precision and correctness of the obtained results.

4. Viva Voce (2 Marks)

Proficiency in answering questions related to theoretical and practical aspects of the subject.

Sample Classroom Exercises:

- 1. Identify ill-defined problem and well-defined problems
- 2. How do you differentiate the methods for solving algorithmic problems: introspection, simulation, computer modelling, and experimentation?
- 3. Use cases for Trial and error, Algorithm, Heuristic and Means-ends analysis can be applied in proffering solution to problems
- 4. Use a diagram to describe the application of Tower of Hanoi in choosing and analysing an action at a series of smaller steps to move closer to the goal
- 5. What effect will be generated if the stage that involves program writing is not observed in the problem-solving process?
- 6. What effect will be generated if the stage that involves program writing is not observed in the problem-solving process?
- 7. Evaluate different algorithms based on their efficiency by counting the number of steps.
- 8. Recursive function that takes a number and returns the sum of all the numbers from zero to that number.
- 9. Recursive function that takes a number as an input and returns the factorial of that number.
- 10. Recursive function that takes a number 'n' and returns the nth number of the Fibonacci number.
- 11. Recursive function that takes an array of numbers as an input and returns the product of all the numbers in the list.

LAB Experiments:

- 1. Demonstrate about Basics of Python Programming
- 2. Demonstrate about fundamental Data types in Python Programming. (i.e., int, float, complex,bool and string types)
- 3. Demonstrate different Arithmetic Operations on numbers in Python.
- 4. Create, concatenate, and print a string and access a sub-string from a given string.
- 5. Familiarize time and date in various formats (Eg. "Sun May 29 02:26:23 IST 2017")
- 6. Write a program to create, append, and remove lists in Python using numPy.
- 7. Programs to find the largest of three numbers.
- 8. Convert temperatures to and from Celsius, and Fahrenheit. [Formula: c/5 = f-32/9]
- 9. Program to construct the stars(*) pattern, using a nested for loop
- 10. Program that prints prime numbers less than 20.

- 11. Program to find the factorial of a number using Recursion.
- 12. Recursive function to add two positive numbers.
- 13. Recursive function to multiply two positive numbers
- 14. Recursive function to the greatest common divisor of two positive numbers.
- 15. Program that accepts the lengths of three sides of a triangle as inputs. The program output should indicate whether or not the triangle is a right triangle (Recall from the Pythagorean Theorem that in a right triangle, the square of one side equals the sum of the squares of the other two sides). Implement using functions.
- 16. Program to define a module to find Fibonacci Numbers and import the module to another program.
- 17. Program to define a module and import a specific function in that module to another program.
- 18. Program to check whether the given number is a valid mobile number or not using functions?

Rules:

- 1. Every number should contain exactly 10 digits.
- 2. The first digit should be 7 or 8 or 9
SEMESTER S1

ENGINEERING WORKSHOP

(Group C)

Course Code	GCESL106	CIA Marks	50
Teaching Hours/Week (L: T:P: R)	0-0-2-0	ESE Marks (Internal only)	50
Credits	1	ESE Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- **1.** To enable the student to familiarize various tools, measuring devices, practices and different methods employed in the industry.
- **2.** To enable the students to apply this experience while developing product/project for the benefit of society.

Expt.	Experiments				
No.	(Minimum 12 Exercises)				
	General: Introduction to workshop practice, Safety precautions, Shop floor ethics, and				
	Basic First Aid knowledge. Study of mechanical and measurement tools, components and				
	their applications: (a) Tools: screw drivers, spanners, Allen keys, cutting pliers etc. and				
1	accessories (b) bearings, seals, O-rings, circlips, keys etc.(c)Vernier Calipers, Height				
	Gauge, Depth Gauge, Micrometers, Bevel Protractor etc.				
	Carpentry: Understanding carpentry tools and knowledge of at least one model				
2					
	1. T –Lap joint 2. Cross lap joint 3. Dovetail joint 4. Mortise joints				
	Foundry: Understanding of foundry tools and knowledge of at least one model				
3					
	1. Bench Moulding 2. Floor Moulding 3. Core making 4. Pattern making				
	Sheet Metal: Understanding sheet metal working tools and knowledge of at least one				
4	model				
	1. Cylindrical shape 2. Conical shape 3. Prismatic shaped job from sheet metal				
5	Fitting: Understanding the tools used for fitting and knowledge of at least one model				
	1. Square Joint 2. V- Joint 3. Male and female fitting				
6	Plumbing: - Understanding plumbing tools and pipe joints, along with				
0	practicing one exercise on joining pipes using a minimum of three types of pipe joints				
	Smithy: - Understanding the tools used in smithy. Demonstrating the forge-ability of				
7	different materials (MS, Al, alloy steel and cast steels) in both cold and hot states.				
/	Observing the qualitative difference in the hardness of these materials. One exercise on				
	smithy (Square prism).				

	Welding: Understanding welding equipment and practicing at least one welding technique,				
•	such as making joints using electric arc welding. Bead formation in				
8	horizontal, vertical and overhead positions				
9	Rolling: - Objective of rolling, rolling process, practical on two high rolling mill				
10	Electroplating: -Electroplating a given job				
	Metrology: Common measuring instruments used in workshop, experiments to find the				
	angle of a dovetail, angle of a taper and the radius of a circular surface. Introduction to				
11	instruments Vernier Bevel Protractor, Vernier Depth Gauge,				
	Vernier Height Gauge.				
	Assembly: Demonstration only Dissembling and assembling of				
12	1. Cylinder and piston assembly 2. Tail stock assembly 3. Bicycle 4. Pump or any other				
12	machine				
	Machines: Demonstration of the following machines:				
13	Shaping and slotting machine; Milling machine; Grinding Machine; Lathe; Drilling Machine.				
	Modern manufacturing methods (Fab lab/IDEA Lab - Demonstration only):				
14	Power tools, CNC machine tools, 3D printing, Soft Materials cutting using special machines				
	Use of proper Personal Protective Equipments. Measurements using Tape, Ruler, Vernier				
15	calipers, screw gauge				
16	Measuring the area of a plot with an irregular boundary using a chain and cross				
	Staff				
17	Measuring the area of a building using Distomat				
18	Finding the level difference between two points using dumpy level				
19	Onsite quality assessment of brick, and cement				
	Construct a 1 and 1 ½ thick brick wall with a height of 50 cm and a minimum length of 60				
20	cm using English bond. Check the verticality of the wall				
	Construct a 1 and 1 ½ thick brick wall with a height of 50 cm and a minimum length of 60				
21	cm using Flemish bond. Check the verticality of the wall				
	Estimate the number of different types of building blocks needed to construct the walls of				
22	a room measuring 2m x 3m, accounting for standard-sized doors and				
	windows.				
23	Setting out of a two roomed building using thread, tape and water tube levelling.				
	Conduct a market study to understand the types, prices, and general specifications of at				
24	least three materials available in the market (such as bricks, cement, aggregates, steel,				
	plumbing items, fixtures, weiging roos, fasteners etc.).				
	studying the tools and testing instruments for electrical works. Wiring a light of a fan				
25	circuit using one way and two-way switch.				
	Familiarization/Application of testing instruments and commonly used tools in electronic				
	works. [Multimeter, Soldering iron, De-soldering pump, Pliers, Cutters, Wire strippers,				
26	Screw drivers, Tweezers, Crimping tool, Hot air soldering and desoldering station etc.]				
Note: Mi	nimum of 12 experiments from among the 26 experiments listed, is to be completed.				

Course Assessment Method (CIA: 50 marks, ESE: 50 marks)

Continuous Internal Assessment Marks (CIA):

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Total
5	45	50

End Semester Examination Marks (ESE): (Internal evaluation only)

Procedure/ Preparatory work/Design / Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

• Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.

- Minimum Pass Mark: The requirement for passing the lab course included in the first- year curriculum is that the student must score a minimum of 50% overall, combining marks from both Continuous Internal Evaluation (CIE) and End Semester Examination (ESE). There is no separate minimum requirement for each component.
- There will not be any relaxation in the attendance requirement.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply appropriate Tools and Instruments with respect to the mechanical workshop trades	КЗ
CO2	Identify Mechanical workshop operations/ methods employed in the industry in accordance with the materials, objects and practices	КЗ
CO3	Apply appropriate safety measures with respect to the mechanical workshop trades	КЗ
CO4	Identify the conventional machine tools and the operations that they can perform for various jobs.	К2
CO5	Demonstrate practical skills in construction techniques, material estimation, and building layout, including brick bonding and setting out of buildings.	КЗ

CO6	Apply surveying principles to measure areas of irregular plots and buildings	К3
	using instruments like chain, cross staff and Distomat,	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	3	-	-	2
CO2	3	2	-	-	-	-	-	-	3	-	-	2
CO3	3	2	-	-	-	-	-	-	3	-	-	2
CO4	3	2	-	-	-	-	-	-	3	-	-	2
CO5	3	2	-	-	-	-	-	-	3	-	-	2
CO6	3	2	-	-	-	-	-	-	3	-	-	2

CO-PO Mapping Table:

Text Books							
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Mechanical Workshop Practice	K C John	PHI Learning	Edition 2 2010			
2	Engineering Materials	S C Rangwala	Charotar Publishing House Pvt Limited	Edition 43 2019			
3	Building Materials	S K Duggal	New Age International	Edition 6 2025			
4	Indian Practical Civil Engineering Handbook	Khanna P.N,	UBS Publishers Distributers (P) Ltd.	Year 2012			
5	Building Construction	Arora S.P and Bindra S.P	Dhanpat Rai Publications	Edition 5 Year 2022			

	Reference Books						
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Elements of Workshop Technology Vol-1- Manufacturing Processes	S K Hajra Choudhury A K Hajra Choudhury Nirjhar Roy	MPP Media Promoters and Publishers	2008			

Video Links (NPTEL, SWAYAM)					
Link ID					
https://archive.nptel.ac.in/courses/105/106/105106206/					
https://archive.nptel.ac.in/courses/105/106/105106201/					
https://archive.nptel.ac.in/courses/105/104/105104101/					
https://archive.nptel.ac.in/courses/117/106/117106108/					

Continuous Assessment (45 Marks)

1. Preparation and Pre-Lab Work (10 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (15 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (10 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (10 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Assessment Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.
- 2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S1/S2

HEALTH AND WELLNESS

(Common to All Groups)

Course Code	UCHWT127	CIA Marks	50
Teaching Hours/Week (L: T:P: R)	1:0:1:0	ESE Marks	0
Credits	1	ESE Hours	Nil
Prerequisites (if any)	None	Course Type	

Course Objectives:

- 1. To provide essential knowledge on physical activity, health, and wellness.
- **2.** To ensure students understand body systems, exercise principles, nutrition, mental health, and disease management.
- **3.** To educate students on the benefits of yoga, the risks of substance abuse and basic first aid skills.
- 4. To equip students with the ability to lead healthier lifestyles.
- **5.** To enable students to design effective and personalized exercise programs.

SYLLABUS

Module No.	Syllabus Description			
1	 Human Body Systems related to Physical activity and its functions: Respiratory System - Cardiovascular System. Musculoskeletal System and the Major Muscle groups of the Human Body. Quantifying Physical Activity Energy Expenditure and Metabolic equivalent of task (MET) Exercise Continuum: Light-intensity physical activity, Moderate – intensity physical activity, Vigorous -intensity physical activity. Defining Physical Activity, Aerobic Physical Activity, Anaerobic Physical Activity, Exercise and Health-Related Physical Fitness. FITT principle to design an Exercise programme Components of Health-related Physical Fitness: - Cardiorespiratory Fitness- Muscular strength- Muscular endurance- Flexibility- Body composition. 	4		

2	Concept of Health and Wellness: Health and wellness differentiation, Factors affecting health and wellness. Mental health and Factors affecting mental health. Sports and Socialization: Sports and character building - Leadership through Physical Activity and Sports Diet and nutrition: Exploring Micro and Macronutrients: Concept of Balanced diet, Carbohydrate & the Glycemic Index	2
	Animal & Plant - based Proteins and their Effects on Human Health Dietary Fats & their Effects on Human Health Essential Vitamins and Minerals	
3	Lifestyle management strategies to prevent / manage common hypokinetic diseases and disorders - Obesity - Cardiovascular diseases (e.g., coronary artery disease, hypertension) - Diabetes - Osteoporosis - Musculoskeletal disorders (e.g., osteoarthritis, Low back pain, Kyphosis, lordosis , flat foot, Knock knee) Meaning, Aims and objectives of yoga - Classification and importance of Yogic Asanas (Sitting, Standing, lying) Pranayama and Its Types - Active Lifestyle and Stress Management Through Yoga Understanding on substance abuse and addiction - Psychoactive substances & its ill effects- Alcohol- Opioids- Cannabis - Sedative -Cocaine -Other stimulants, including caffeine -Hallucinogens -Tobacco -Volatile solvents.	4
4	 First aid and principles of First Aid: Primary survey: ABC (Airway, Breathing, Circulation). Qualities of a Good First Aider First aid measures for: - Cuts and scrapes - Bruises - Sprains - Strains -Fractures Burns - Nosebleeds. First Aid Procedures: Cardiopulmonary Resuscitation (CPR) – Heimlich Maneuver - Applying a sling Sports injuries: Classification (Soft Tissue Injuries - Abrasion, Contusion Lasoration Inscient Strain & Strain) 	2

Additional Topics

- Need and Importance of Physical Education and its relevance in interdisciplinary context. Understanding of the Endocrine System
- Developing a fitness profile
- Healthy foods habits for prevention and progression of Lifestyle Diseases. Processed foods and unhealthy eating habits.
- Depression Anxiety Stress
- Different ways of carrying an injured person. Usage of Automated external defibrillator

Course Assessment Method (CIA: 50 marks)

Continuous Internal Assessment Marks (CIA):

Attendance	Case Study/Micro project/Presentation	Activity evaluation	Total
10	20	20	50

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Explain the different human body systems and describe various types of physical activities along with methods to measure and quantify these activities.	К2
CO2	Explain how to maintain or improve health and wellness through psychological practices, dietary habits, and sports activities.	К2
CO3	Discuss about common hypokinetic disorders and musculoskeletal disorders, and describe the importance of leading a healthy lifestyle through the practice of yoga and abstaining from addictive substances.	К2
	Explain the basics of first aid and describe common sports	
CO4	injuries	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				2		3		3	3	2		2
CO2				2		3		2	2			2
CO3						3		3				2
CO4				2		3						2

B.Tech 2024 – S1/S2

Text Books						
SI.	Title of the Book	Name of the	Name of the	Edition		
No		Author/s	Publisher	and Year		
1	Foundations of Nutrition	Bhavana Sabarwal	Commonwealt h Publishers	1999		
2	Anatomy and physiology in health and illness.	Ross and Wilson	Waugh, A., & Grant, A.	2022		

Reference Books					
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Fit to be Well Essential Concept	Thygerson, A. L., Thygerson, S. M., & Thygerson, J. S.	Jones & Bartlett Learning.	2018	
2	Introduction to physical education, fitness, and sport.	Siedentop, D., & Van der Mars, H.	Human kinetics.	2022	
3	Substance Use Disorders. Manual for Physicians.	Lal, R., & Ambekar, A. (2005).	National Drug Dependence Treatment Centre, New Delhi	2005	
4	The exercise health connection-how to reduce your risk of disease and other illnesses by making exercise your medicine.	Nieman, D. C., & White, J. A	Public Health	1998	
5	ACSM's resource manual for guidelines for exercise testing and prescription.	Lippincott Williams & Wilkins.	American College of Sports Medicine.	2012	
6	Exercise Physiology: energy, nutrition and human performance.	Katch, F. I., Katch, V. L., & McArdle, W. D.	Lippincott Williams &Wilkins	2010	

Continuous Internal Assessment Marks (CIA): for the health and wellness course

Students will be evaluated as follows.

Title	Method of Evaluation		
	Students must attend at least 75% of both theory and practical classes. They		
	will receive 10 marks based on their class attendance.		
	Students who do not meet the minimum attendance requirement for a		
Attendance	course, as specified in the B. Tech regulations, will not be eligible to proceed		
	to the		
	next criteria.		
	Assignments will be given to students to assess their understanding of the		
	subjects taught. Students will be required to make presentations on the		
Accianment /	subjects taught in class, and their understanding of the subjects will be		
Assignment /	assessed. Based on the Assignments and Presentations the students will be		
Presentation	awarded marks out of 20		
	The Assignment / Presentation faculty handling the class will use the tests		
	from the Fitness Protocols and Guidelines for ages 18+ to 65 years, as set forth by FIT India. Measurements will be taken for all the tests of the FIT India		
	Fitness Protocol and the evaluation will be based on the benchmark score		
	received for the following tests:		
	1. V Sit Reach Test		
	2. Partial Curl Up - 30 seconds		
	3. Push Ups (Male) and Modified Push Up (Female)		
	4. Two (2) Km Run/Walk		
	Students who ashieve a total househmank search of 0 serves the		
Activity Evaluation	students who achieve a total benchmark score of 8 across the		
-	Students who score botter will be awarded a maximum mark of 20		
	Students who score better will be awarded a maximum mark of 20.		
Activity Evaluation	Physically challenged and medically unit students can opt for an objective		
- Special	norformance in the objective test, they will be awarded marks out of 20		
Circumstances	performance in the objective test, they will be awarded marks out of 20.		
	Students who enrolled themselves in the NCC during the course period		
Activity Evaluation	(between the start and end dates of the program) and attended 5 college		
- Special	level parades will be awarded pass marks for activity evaluation. Students		
Considerations - NCC	who attend more parades will be eligible for a maximum mark of 20 based		
	on their parade attendance.		

Tests to be evaluated as per Criterion - 2 and Benchmark Scores

V Sit Reach Test

How to Perform:

1. The subject removes their shoes and sits on the floor with the measuring line between their legs and the soles of their feet placed immediately behind the baseline, heels 8-12" apart.

2. The thumbs are clasped so that hands are together, palms facing down and placed on the measuring line.

3. With the legs held flat by a partner, the subject slowly reaches forward as far as possible, keeping the fingers on baseline and feet flexed.

4. After three tries, the student holds the fourth reach for three seconds while that distance is recorded.

5. Make sure there are no jerky movements, and that the fingertips remain level and the legs flat.

Infrastructure/Equipment Required:

1. A tape for marking the ground, marker pen, and ruler.

2. With the tape mark a straight line two feet long on the floor as the baseline, and a measurement line perpendicular to the midpoint of the baseline extending two feet on each side.

3. Use the marker pen to indicate every centimeter and millimeter along the measurement line. The point where the baseline and the measuring line intersect is the zero point.

4. Scoring: The score is recorded in centimeters and millimeters as the distance reached by the hand, which is the difference between the zero point (where the baseline and measuring line intersect) and the final position

Level	Benchmark Score	Measurement (cm)
1	2	<11
2	4	12-13
3	6	14-17
4	7	18-19
5	8	20-21
6	9	22
7	10	>22

Scoring for V Sit Reach Test for Males

Scoring for V Sit Reach Test for Females

Level	Benchmark Score	Measurement (cm)
1	2	<14
2	4	15-16
3	6	17-19
4	7	20-21
5	8	22
6	9	23
7	10	>23

Partial Curl Up - 30 seconds

How to Perform:

1. The subject lies on a cushioned, flat, clean surface with knees flexed, usually at 90 degrees, with hands straight on the sides (palms facing downwards) closer to the ground, parallel to the body.

2. The subject raises the trunk in a smooth motion, keeping the arms in position, curling up the desired amount (at least 6 inches above/along the ground towards the parallel strip).

3. The trunk is lowered back to the floor so that the shoulder blades or upper back touch the floor.

Infrastructure/Equipment Required:

Flat clean cushioned surface with two parallel strips (6 inches apart), Stopwatch

Scoring: Record the maximum number of Curl ups in a certain time period 30

seconds. Scoring for Partial Curl Up - 30 seconds Test for Males

Level	Benchmark Score	Numbers
1	2	<25
2	4	25-30
3	6	31-34
4	7	35-38
5	8	39-43
6	9	44-49
7	10	>49

Scoring for Partial Curl Up - 30 seconds Test for Females

Level	Benchmark Score	Numbers
1	2	<18
2	4	18-24
3	6	25-28
4	7	29-32
5	8	33-36
6	9	37-43
7	10	>43

Push Ups for Male/Modified Push Ups for

Female How to Perform:

- 1. A standard push up begins with the hands and toes touching the floor, the body and legs in a straight line, feet slightly apart, the arms at shoulder width apart, extended and at a right angle to the body.
- 2. Keeping the back and knees straight, the subject lowers the body to a predetermined point, to touch some other object, or until there is a 90-degree angle at the elbows, then returns back to the starting position with the arms extended.
- 3. This action is repeated, and the test continues until exhaustion, or until they can do no more in rhythm or have reached the target number of push-ups.
- 4. For Female: push-up technique is with the knees resting on the ground.

Infrastructure/Equipment Required:

Flat clean cushioned surface/Gym mat

Scoring: Record number of correctly completed pushups.

Scoring for Push Ups for Male

Level	Benchmark Score	Numbers
1	2	<4
2	4	04- 10
3	6	11 -18
4	7	19-34
5	8	35-46
6	9	47-56
7	10	>56

Scoring for Modified Push Ups for Female

Level	Benchmark Score	Numbers
1	2	0-1
2	4	2 - 5
3	6	6 -10
4	7	11 - 20
5	8	21-27
6	9	27-35
7	10	>35

2 Km Run/Walk

How to Perform:

1. Participants are instructed to run or walk 2 kms in the fastest possible pace.

2. The participants begin on signal (Starting point)- "ready, start". As they cross the finish line, elapsed time should be announced to the participants.

3. Walking is permitted but the objective is to cover the distance in the shortest possible time.

Infrastructure/Equipment Required:

Stopwatch, whistle, marker cone, lime powder, measuring tape, 200 or 400 m with 1.22 m (minimum 1 m) width preferably on a flat and even playground with a marking of starting and finish line. You can also use any application on your mobile phone that tells you the distance.

Scoring: Time taken for completion (Run or Walk) in min, sec.

|--|

Level	Benchmark Score	Minutes : Seconds
1	2	> 11:50
2	4	10:42
3	6	09:44
4	7	08:59
5	8	08:33
6	9	07:37
7	10	>07:37

Scoring for 2Km Run/walk for Female

Level	Benchmark Score	Minutes : Seconds
1	2	>13:47
2	4	12:51
3	6	12:00
4	7	11:34
5	8	10:42
6	9	09:45
7	10	>09:45

SEMESTER - S1/S2

LIFE SKILLS AND PROFESSIONAL COMMUNICATION (Common to All Groups)

Course Code	UCHUT128	CIA Marks	100
Teaching Hours/Week (L: T:P: R)	2:0:1:0	ESE Marks	0
Credits	1	ESE Hours	-
Prerequisites (if any)	None	Course Type	Activity-based learning

Course objectives:

- 1. To foster self-awareness and personal growth, enhance communication and interpersonal connection skills, promote effective participation in groups and teams, develop critical thinking, problem-solving, and decision-making skills, and cultivate the ability to exercise emotional intelligence.
- **2.** To equip students with the necessary skills to listen, read, write & speak, to comprehend and successfully convey any idea, technical or otherwise.
- **3.** To equip students to build their profile in line with the professional requirements and standards. **Continuous Internal Assessment Marks (CIA):**
- Continuous internal assessment is based on the individual and group activities as detailed in the activity table given below.
- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. They should use online collaboration tools for group activities, report/presentation making and work management.
- Activities are to be distributed between 3 class hours (2L+1P) and 3.5 Self-study hours.
- Marks given against each activity should be awarded fully if the students successfully complete the activity.
- Students should maintain a portfolio file with all the reports and other textual materials generated from the activities. Students should also keep a journal related to the activities undertaken.
- Portfolio and journal are mandatory requirements for passing the course, in addition to the minimum marks required.

- The portfolio and journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through the HMC courses and Mini project course.
- Self-reflection questionnaire shall be given at the beginning of the semester, in between and at the end of the semester based on the guidelines in the manual of the course.

SI. No.	Activity	Class room (L) / Self Study (SS)	Week of completion	Group / Individual (G/I)	Marks	Skills	со
1.1	Group formation and self-introduction among the group members	L	1	G	-	• Connecting with	
1.2	Familiarizing the activities and preparation of the time plan for the activities	L	1	G	-	 Time Tanagement Cantt Chart 	
1.3	Preparation of Gantt chart based on the time plan	SS	1	G	2	- Gantt Chart	
2.1	Take an online personality development test, self-reflect and report	SS	1	I	2	 Self- awareness Writing 	CO1
2.2	 Role-storming exercise 1: Students assume 2 different roles given below and write about their Strengths, Areas for improvement, Concerns, Areas in which he/she hesitates to take advice, Goals/Expectations, from the point of view of the following assumed roles i) their parent/guardian/mentor ii) their friend/sibling/cousin 	L	1	1	2	 Goal setting - Identification of skills and setting goal Self-awareness Discussion in groups Group work- Compiling of ideas Mind mapping 	CO1
2.3	Role-storming exercise 2: Students assume the role of their teacher						CO1
	and write about the	22	1	1	2		

Table 1. Activity Table

				1	1	1	
	 Skills required as a B. Tech graduate Attitudes, habits, approaches required and activities to be practiced during their B.Tech years, in order to achieve the set goals 						
2.4	Discuss the skills identified through role storming exercise by each one within their own group and improvise the list of skills	L	1	G	2		CO1
2.5	Prepare a mind map based on the role- storming exercise and exhibit/present it in class	SS	2	G	2		C01
							-
3	Prepare a presentation on instances of empathy they have observed in their own life or in other's life	L	2 to 4	I	2	• Empathy	CO2
4.1	Each student connects and networks with a minimum of 3 professionals from industry/public sector organizations/other agencies/NGOs/academia (at least 1 through LinkedIn)	SS	3	1	2	 Workplace awareness Listening Communication - interacting with neople 	
4.2	 Interact with them to understand their workplace details including workplace skills required their work experience activities they have done to enhance their employability during their B. Tech years suggestions on the different activities to be done during B. Tech years Prepare a documentation of this 	SS	3	1	4	 People Networking through various media including LinkedIn Discussion in groups Report preparatio n Creativity 	CO2
4.3	Discuss the different workplace details & work readiness activities assimilated by each through the interactions within their group and compile the inputs collected by the individuals Prepare the Minutes of the discussions	SS	3	G	2	Goal setting - Preparation of action plan	CO2
4.4	Report preparation based on the discussions	SS	4	G	3		CO4
4.5	Perform a role-play based on the workplace dynamics assimilated	L	5	G	4		

	workplace dynamics assimilated through interactions and group discussions	L	5	G	4	CO3
4.6	Identify their own goal and prepare an action plan for their undergraduate journey to achieve the goal	SS	5	Ι	2	C01

B.Tech 2024 – S1/S2

-					-		
5.1	Select a real-life problem that requires	L	6	G	2		
	a technical solution and list the study	-	Ū	G	-		CO3
	materials needed						
5.2	Listen to TED talks & video lectures from						
	renowned Universities related to the	SS	6	I	2		
	problem and prepare a one-page						CO4
	summary (Each group member should						
	select a different resource)						
5.3	Use any online tech forum to gather	SS	6	G	2		
	ideas for solving the problem chosen						CO5
5.4	Arrive at a possible solution using six	L	7	G	3		
	thinking hat exercise						CO3
5.5	Prepare a report based on the problem-	SS	7	G	2	-	
	solving experience						CO4
6.1	Linkedin profile creation	SS	1	I	2		CO6
6.2	Resume preparation	SS	8	I	2	Profile-building	CO6
6.3	Self-introduction video	SS	8	I	3		CO6
7	Prepare a presentation on instances of	SS	9	Ι	2	Emotional	
	demonstration of emotional intelligence					intelligence	CO2
8	Prepare a short video presentation on					Diversity	
	diversity aspects observed in our	SS	10	G	3		CO2,
	society (3 to 5 minutes)						CO5
9	Take online Interview skills					Interview skills	
	development sessions like	SS	10	I	2		CO6
	reflect and report						
10	Take an online listening test, self-	SS	11	I	2	Listening skills	
	reflect and report						CO6
11.1	Activities to improve English	L	8	I/G	4		
	vocabulary of students					 English vocabulary 	CO4
<u> </u>							
11.2	Activities to help students identify	L	9	I/G	2	 English language 	
	errors in English language usage					skills	CO4
11.3	Activity to help students identify					• Writing	
	commonly misspelled words,	L	10	I/G	2	 Presentation 	
	commonly mispronounced words and					• Group work	CO4
	confusing words					 Self-reflection 	
	÷		1		I	-	1

B.Tech 2024 –*S1/S2*

11.4	Write a self-reflection report on the improvement in English language communication through this course	SS	12	I	2		CO4
11.5	Presentation by groups on the experience of using online collaboration tools in various group activities and time management experience as per the Gantt chart	L	11 to 12	G	2		CO4, CO5
12.1	Each group prepares video content for podcasts on innovative technological interventions/research work tried out in Kerala context by academicians/professionals/Govt. agencies/research institutions/private agencies/NGOs/other agencies	SS	12	G	4	 Audio-visual presentations creations with the use of technology tools Effective use of social media platforms 	CO2, CO4, CO5
12.2	Upload the video content to podcasting platforms or YouTube	SS	12	G	1	• Profile building	CO5
12.3	Add the link of the podcast in their LinkedIn profile	SS	12	G	1		CO5

Table 2. Lab hour Activities (P): 24 Marks

SI No	Activity	Marks	Skill	со
1	 Hands-on sessions on day-to-day engineering skills and a self-reflection report on the experience gained: Drilling practice using electric hand drilling machines. Cutting of MS rod and flat using electric hand cutters. Filing, finishing and smoothening using electrically operated hand grinders. MS rod cutting using Hack saw by holding the work in bench wise. Study and handling different types of measuring instruments. Welding of MS, SS work pieces. Pipe bending practice (PVC and GI). Water tap fitting. Water tap rubber seal changing practice. In Union and valves connection practice in pipes. Foot valve fitting practice. 	24	Basic practical engineering skills	3
2	Language Lab sessions	-	Language Skills	4

		Bloom's					
	Course Outcome						
		Level (KL)					
	Develop the ability to know & understand oneself, show confidence in one's						
CO1	potential & capabilities, set goals and develop plans to accomplish tasks	К5					
	Develop the ability to communicate and connect with others, participate in						
CO2	groups/teams, empathise, respect diversity, be responsible and understand the need to exercise emotional intelligence	К5					
CO3	Develop thinking skills, problem-solving and decision-making skills	К5					
	Develop listening, reading, writing & speaking skills, ability to comprehend						
CO4	& successfully convey any idea, and ability to analyze, interpret & effectively summarize textual, audio & visual content	К6					
	Develop the ability to create effective presentations through audio-visual						
CO5	mediums with the use of technology tools and initiate effective use of social media platforms & tech forums for content delivery and discussions	К6					
	Initiate profile-building exercises in line with the professional requirements,						
CO6	and start networking with professionals/academicians	К6					

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1										2		3
CO2					2			3		3		3
CO3		3	3		3					3		2
CO4					2					3		2
CO5					3	3				3		2
CO6					2					2		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	Text Books								
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Life Skills & Personality Development	Maithry Shinde et.al.	Cambridge University Press	First Edition, 2022					
2	Emotional Intelligence: Why it can matter more than IQ	Daniel Goleman	Bloomsbury, Publishing PLC	25th Anniversary Edition December 2020					
3	Think Faster, Talk Smarter: How to speak successfully when you are put on the spot	Matt Abrahams	Macmillan Business	Septembe r 2023					
4	Deep Work: Rules for focused success in a distracted world	Cal Newport	PIATKUS	January 2016					
5	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017					
6	Interchange	Jack C. Richards, With Jonathan Hull, Susan Proctor	Cambridge publishers	5th Edition					

	Reference Books								
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Life Skills for Engineers	Remesh S., Vishnu R.G.	Ridhima Publications	First Edition, 2016					
2	Soft Skills & Employability Skills	Sabina Pillai and Agna Fernandez	Cambridge University Press	First Edition, 2018					
3	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017					
4	English Grammar in Use	Raymond Murphy,	Cambridge University Press India PVT LTD	5th Edition 2023					
5	Guide to writing as an Engineer	David F. Beer and David McMurrey	John Willey. New York	2004					

B.Tech 2024 –S1/S2

SEMESTER 2

SEMESTER S2

MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE – 2

(Common to Groups B & C)

Course Code	GYMAT201	CIA Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	ESE Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic knowledge in single variable calculus.	Course Type	Theory

Course Objectives:

1. To provide a comprehensive understanding of partial derivatives, multiple integrals, and the differentiation and integration of vector-valued functions, emphasizing their applications in engineering contexts.

SYLLABUS

Module	Syllabus Description (
No.							
	Limits and continuity, Partial derivatives, Partial derivatives of						
	functions with two variables, Partial derivatives viewed as rate of						
	change and slope3s, Partial derivatives of functions with more than						
	two variables, Higher order partial derivatives, Local Linear						
1	approximations, Chain rule, Implicit differentiation, Maxima and	9					
-	minima of functions of two variables - relative maxima and minima	•					
	(Text 1: Relevant topics from sections 13.2, 13.3, 13.4, 13.5, 13.8)						
	Double integrals, Reversing the order of integration in double						
	integrals, change of coordinates in double integrals (Cartesian to						
2	polar), Evaluating areas using Double integrals, Finding volumes using	9					
-	double integration,	•					
	Triple integrals, Volume calculated as triple integral, Triple integral in						
	Cartesian and cylindrical coordinates.						
	(Text 1: Relevant topics from section 14.1, 14.2, 14.3, 14.5, 14.6)						
	Vector valued function of single variable - derivative of vector valued						
	function, Concept of scalar and vector fields, Gradient and its						
3	properties, Directional derivative, Divergent and curl, Line integrals of						
•	vector fields, Work done as line integral, Conservative vector field,	٥					
	independence of path, Potential function (results without proof).	2					
	(Text 1: Relevant topics from section 12.1, 12.2, 13.6, 15.1, 15.2,						
	15.3)						

4	Green's theorem (for simply connected domains, without proof) and applications to evaluating line integrals, finding areas using Greens theorem, Surface integrals over surfaces of the form $z=g(x, y)$, Flux integrals over surfaces of the form $z = g(x, y)$, Divergence theorem (without proof), Using Divergence theorem to find flux, Stokes theorem (without proof) (Text 1: Relevant topics from section 15.4, 15.5, 15.6, 15.7,15.8)	9
---	--	---

Course Assessment Method (CIA: 40 marks, ESE: 60 marks)

Continuous Internal Assessment Marks (CIA):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Written)	Total
5	15	5	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from	Each question carries 9 marks.	
each module.	• Two questions will be given from each	
• Total of 8 Questions,	module, out of which 1 question should be	
Each carrying 3 marks		60
	• Each question can have a maximum of 3	
(8x3 =24marks)	subdivisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Compute the partial and total derivatives and maxima and minima of multivariable functions and to apply in engineering problems.	КЗ
CO2	Understand theoretical idea of multiple integrals and to apply them to find areas and volumes of geometrical shapes.	КЗ
CO3	Compute the derivatives and line integrals of vector functions and to learn their applications.	КЗ
CO4	Apply the concepts of surface and volume integrals and to learn their inter-relations and applications.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12
										0		
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

	Text Books									
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Calculus	H. Anton, I. Biven, S.Davis	Wiley	12 th edition, 2024						

	Reference Books					
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Thomas' Calculus	Maurice D. Weir, Joel Hass, Christopher Heil, Przemyslaw Bogacki	Pearson	th edition, 15 2023		
2	Essential Calculus	J. Stewart	Cengage	2 nd edition, 2017		
3	Advance Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition, 2016		
4	Bird's Higher Engineering Mathematics	John Bird	Taylor & Francis	9 th edition, 2021		
5	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023		

	Video Links (NPTEL, SWAYAM)			
Module No.	Link ID			
1	https://nptel.ac.in/courses/111107108			
2	https://nptel.ac.in/courses/111107108			
3	https://nptel.ac.in/courses/111107108			
4	https://nptel.ac.in/courses/111107108			

SEMESTER S2

ENGINEERING GRAPHICS AND COMPUTER AIDED DRAWING

(Group C)

Course Code	GCEST203	CIA Marks	40
Teaching Hours/Week (L: T:P: R)	2-0-2-0	ESE Marks	60
Credits	3	ESE Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory & Lab

Course Objectives:

- 1. To learn the principles and techniques of dimensioning and preparation of drawings
- 2. To develop the ability to accurately interpret engineering drawings
- 3. To learn the features of CAD software

SYLLABUS

Module		Contact			
No.	Syllabus Description				
	Introduction: Relevance of technical drawing in engineering field. Types				
	of lines, Dimensioning, BIS code of practice for technical drawing. (No				
	questions for the end semester examination)				
1	Projection of points in different quadrants, Projection of straight lines				
	inclined to one plane and inclined to both planes. Traces of a line.				
	Inclination of lines with reference planes True length and true	9			
	inclinations of line inclined to both the reference planes.	_			
	Projection of Simple solids such as Triangular, Rectangle, Square,				
	Pentagonal and Hexagonal Prisms, Pyramids, Cone Cylinder and				
2	tetrahedron. Projection of solids in simple position including profile				
2	view. Projection of solids with axis inclined to one of the reference	0			
	planes and with axis inclined to both reference planes.	9			
	Sections of Solids: Sections of tetrahedron, Prisms, Pyramids, Cone,				
	Cylinder with axis in vertical position and cut by different section planes.				
	True shape of the sections. (Exclude true shape given problems)				
3	Development of Surfaces: Development of surfaces of the solids and	9			
	solids cut by different section planes. (Exclude problems with through				
	holes)				

	Isometric Projection: Isometric scale- Isometric View and Projections of	
	Prisms, Pyramids, Cone, Cylinder, Frustum of Pyramid, Frustum of	
	Cone, Sphere, Hemisphere and their combinations.	
	Computer Aided Drawing (CAD): Introduction, Role of CAD in design and	
4	development of new products, Advantages of CAD. Creating two-	
	dimensional drawing with dimensions using suitable software. (CAD,	9
	only internal evaluation)	_
-	dimensional drawing with dimensions using suitable software. (CAD, only internal evaluation)	9

Course Assessment Method (CIA: 40 marks, ESE: 60 marks)

Continuous Internal Assessment Marks (CIA):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Written)	Total
5	15	5	10	5	40

End Semester Examination Marks (ESE)

Student can choose any one full question out of two questions from each module

	Total
2 Questions from one module.	
Total 8 Questions, each question carries 15 marks	60
(15x4 =60marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand and plot the projection of points and lines located in different quadrants	К3
CO2	Prepare Multiview orthographic projections of objects by visualizing them in different positions	К3
CO3	Plot sectional views and develop surfaces of a given object	К3
CO4	Prepare pictorial drawings using the principles of isometric projection	КЗ
CO5	Sketch simple drawing using cad tools.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	2										
CO3	3	2										
CO4	3	2										
CO5	3	2	2		3							

CO-PO Mapping Table:

	Text Books					
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Engineering Graphics	Varghese, P. I.	V I P Publishers	Ist Edition 2012		
2	Engineering Graphics,	Benjamin, J.	Pentex Publishers	5 th Edition 2017		
3	Engineering Graphics for degree	John, K. C.	Prentice Hall India Publishers	Publish e din 2011		
5	Engineering Graphics,	Anilkumar, K. N.	Adhyuth Narayan Publishers	10 th Edition 2016		

	Reference Books					
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Engineering Graphics with AutoCAD,	Kulkarni, D. M., Rastogi, A. P. and Sarkar, A. K.	Prentice Hall India Publishers	2009		
2	Engineering Drawing & Graphics	Venugopal, K.	New Age International Publishers	4 th edition 2007		
3	Engineering Drawing	Parthasarathy, N. S., andMurali, V.	Oxford University Press	2015		

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/112/102/112102304/					
2	https://archive.nptel.ac.in/courses/112/102/112102304/					
3	https://archive.nptel.ac.in/courses/112/102/112102304/					
4	https://archive.nptel.ac.in/courses/112/102/112102304/					

SEMESTER S2

BASIC ELECTRICAL & ELECTRONICS ENGINEERING

(Group C)

Course Code	GCEST204	CIA Marks	40
Teaching Hours/Week (L: T:P: R)	4:0:0:0	ESE Marks	60
Credits	4	ESE Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Apply fundamental concepts and circuit laws to solve simple DC/AC electric circuits
- **2.** Develop an awareness on the fundamentals of electric power generation, transmission and distribution
- 3. Compare different types of DC and AC motors
- 4. Describe the fundamental concepts of electronic components and devices
- 5. Outline the basic principles of an electronic instrumentation system
- 6. Identify important applications of modern electronics in the contemporary world

SYLLABUS

Module	Syllabus Description	
No.		Hours
	Generation of alternating voltages : - Faradays laws of Electromagnetic induction, Generation of Alternating Voltage, Elementary Generator, Representation of ac voltage and currents, sinusoidal waveforms: frequency, period average, RMS values and form factor of waveform; (Simple numerical problems)	
1	DC Circuits : Resistance in Series and Parallel, Ohms Law and Kirchhoff's laws, Voltage and current divider rule (Simple numerical problems)	11
	AC circuits: Purely resistive, inductive and capacitive circuits; Inductive and capacitive reactance, concept of impedance. (Simple numerical problems) Three phase AC systems: Representation of three phase voltages; star and delta connections (balanced only), relation between line and phase voltages, line and phase currents Power in AC circuits – Power factor; active, reactive and apparent power in single phase and three phase system. (Simple numerical	

	problems)	
	problems)Generation of electrical energy: Conventional Sources: Hydro, thermal, nuclear plants (Block diagram description)Introduction to non-conventional energy sources: solar, wind, small hydro plants, PV system for domestic application.Transformers. Principle of operation, step-up and step-down transformersAC power supply scheme: Single phase and three phase system, Three phase 3 wire and 4 wire systems, Transmission System, Distribution system: Feeder, distributor, service mains Types of Motors – Principle of Operation: Block diagram showing power stages, losses and efficiency (electrical and mechanical and overall	
2	efficiency); Simple numerical efficiency Introduction to different types of DC and AC motors. Classification and different type of dc and ac motors, common applications: Principle of traction and applications Earthing: need for earthing, Types of earthing; pipe earthing, plate earthing; Principle of operation of MCB, ELCB/RCCB	11
	Introduction to Semiconductor devices: Electronic components- Passive and active components - Resistors, Capacitors and Inductors (constructional features not required): types, specifications. Standard values, colour coding.	
3	Junction Transistors: PNP and NPN structures, Principle of Operation	11
	Digital Electronics: -Binary number system, Boolean algebra and Logic Gates, Universal gates. Basic electronic circuits: - Rectifiers and power supplies: Block diagram description of a dc power supply, working of a full wave bridge rectifier, capacitor filter (no analysis), working of simple zener voltage regulator. Amplifiers: - Transistor as an amplifier, Block diagram of Public Address system	
	Electronic Instrumentation:	
4	Quality of measurements -accuracy, precision, sensitivity and resolution, Working principle and applications of Sensors – pressure – strain gauge, Bourden gauge, temperature – RTD, thermocouple, proximity – capacitive sensor, ultrasonic sensor and accelerometer. Internet of things (IoT): Introduction, architecture of IoT, Implementation of smart city – street lighting, smart parking.	11

Course Assessment Method (CIA: 40 marks, ESE: 60 marks)

Continuous Internal Assessment Marks (CIA):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Written)	Total
5	15	5	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from 	Each question carries 9 marks.	
each module.	 Two questions will be given from each 	
• Total of 8 Questions,	module, out of which 1 question should be	60
Each carrying 3 marks	answered.	
	• Each question can have a maximum of 3	
(8x3 =24marks)	subdivisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Apply fundamental concepts and circuit laws to solve simple DC/AC electric circuits	К2
CO2	Develop an awareness on the fundamentals of electric power generation, transmission and distribution	К3
CO3	Compare different types of DC and AC motors	К2
CO4	Describe the fundamental concepts of electronic components and devices	К2
CO5	Outline the basic principles of an electronic instrumentation system	К2
CO6	Identify important applications of modern electronics in the contemporary world	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	3		2			2	2					2
CO3	3					2						2
CO4	3	2										2
CO5	3		2									2
CO6	3					2	2					2

Text Books								
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Basic Electrical Engineering	D P Kothari and I J Nagrath	Tata McGraw Hill	4/e 2019				
	Schaum's Outline of Basic	J.J.Cathey and Syed A						
2	Electrical Engineering	Nasar	Tata McGraw Hill					
	Basic Electronics: Principles and	Chinmoy Saha, Arindham	Cambridge University					
3	Applications	Halder andDebarati Ganguly	Press	1/e 2018				
4	Basic Electrical and	D. P. Kothari and I. J.	McGraw Hill	2/e 2020				
	Electronics Engineering	Nagrath						
5	The Internet of Things: How Smart TVs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World	Michael Miller	QUE	1/e 2015				
6	Basic Electronics and Linear Circuits	N N Bhargava D C Kulshreshtha and S. C. Gupta	McGraw Hill	2/e 2017				
7	Electronic Communication Systems	Kennedy and Davis	McGraw Hill	6/e 2017				
Reference Books								
-----------------	----------------------------------	--	-------------------	----------	--	--		
SI. No	Title of the Book	Title of the Book Name of the Author/s		Edition				
			Publisher	and Year				
1	Basic Electrical Engineering	D C Kulshreshtha	Tata McGraw Hill	2/e 2019				
2	Electrical Engineering	Del Toro V	Pearson Education	2/e 2019				
	Fundamentals							
3	Basic Electrical Engineering	T. K. Nagsarkar,	Oxford Higher	3/e 2017				
		M. S.Sukhija	Education					
4	Electronics: A Systems	Neil Storey	Pearson	6e 2017				
	Approach							
5	Electronic Devices and Circuit	Robert L. Boylestad	Pearson	11e 2015				
	Theory	Louis Nashelsky						
6	Principles of Electronic	Frenzel, L. E	McGraw Hill	4e 2016				
	Communication Systems							
	Internet of Things: Architecture							
7	and Design Principles	Raj Kamal	McGraw Hill	1/e 2017				
8	Electronic Communication	Dennis Roddy and John	McGraw Hill	4/e 2008				
		Coolen						
9	Basic Electrical Engineering	D C Kulshreshtha	Tata McGraw Hill	2/e 2019				

ENGINEERING ENTREPRENEURSHIP AND IPR

(Common to All Groups)

Course Code	UCEST206	CIA Marks	60
Teaching Hours/Week (L: T:P: R)	2:1:0:0	ESE Marks	40
Credits	3	ESE Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Develop a framework for identifying, curating and validating engineering-based business ideas.
- 2. Learn essential tools for understanding product-market fit and customer needs.
- 3. Create a comprehensive business plan for a new venture.
- 4. Gain foundational knowledge of Intellectual Property Rights (IPR) and their importance for startups.
- 5. Develop skills for prototyping, stakeholder engagement, and team collaboration.

SYLLABUS

Module No.	Syllabus Description					
	Introduction to Ideation, Innovation & Entrepreneurship					
	What is Ideation?					
	Understanding Innovation					
	Frameworks for Innovation					
	The Entrepreneurial Mindset					
1	 Starting a Business, types formation statutory compliances. 	9				
1	Resources for Aspiring Entrepreneurs	5				
	Introduction to Intellectual Property Rights (IPR)					
	 Types of IPR: Patents, trademarks, copyrights, trade secrets Strategies for protecting intellectual property based on the type of innovation 					

	Role of IPR in securing funding and competitive advantage	
	Importance of building a strong team	
	Identifying roles	
	Skill sets	
	Team dynamics	
	Identifying Pain Points and problem statement	
	Idea Generation Techniques	
	Developing and Refining Ideas	
	Develop strategies for bringing your innovation to life	
	Problem and solution canvas preparation	
	Orientation and canvas introduction	
	Customer needs assessment	
	Market segmentation	
	Value proposition	
	Competitive analysis	
	Market entry strategy	
	Market validation	
	 Regulatory and legal considerations 	
	Customer profiling	
	Review of market research	
	Customer segmentation	
2	Customer profiling	9
	Persona development	
	Validation and feedback	
	Prioritisation and selection	
	Communication and messaging	
	Competitor analysis	
	Identify competitors	
	Competitor profiling	
	SWOT analysis	
	Market positioning	
	Customer feedback and reviews	
	Pricing analysis	
	Differentiation strategy	

	Benchmarking and improvement	
	Business plan preparation	
	Business plan framework	
	Market analysis	
	Product/ service description	
	Marketing and sales strategy	
	Operations plan	
	Financial projections	
	Risk management	٩
	Prototype development plan preparation	
3	Prototype requirements analysis	
	Technical specifications	
	Development approach	
	Development timeline	
	Resource allocation	
	Testing and quality assurance	
	Iterative development and feedback loop	
	Documentation and version control	
	Prototype development Stakeholder engagement strategies	
	Investors	
	Partners	9
4	Customers	
	Advisors & Mentors	

Course Assessment Method (CIA: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Microproject	Internal Examination-1	Internal Examination- 2	Internal Examination- 3	Total
5	35	5	10	5	60

Micro project / Comprehensive Business Plan:

The course will be evaluated based on a comprehensive Business Plan Report submitted and prototype development evaluation at the end of the course. The report should integrate learnings and activities from each module, demonstrating a deep understanding of the concepts and your ability to apply them to a chosen engineering venture.

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 Minimum 1 and Maximum 2 Questions from each module. Total of 6 Questions, each carrying 2 marks (6x2 =12 marks) 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. Each question carries 7 marks. (4x7 = 28 marks) 	40

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
C01	Gain foundational knowledge of Innovation and Entrepreneurship, Intellectual Property Rights (IPR) and their importance for startups.	K2			
CO2	К3				
CO3	CO3 Learn essential tools for understanding product-market fit and customer needs.				
CO4	К6				
CO5	Develop skills for prototyping, stakeholder engagement, and team collaboration.	К4			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	3	3	3						
CO2	2	2	3	3	3	3	3	3	3			
CO3	2	2	2	2	2	3	3	3	3	2	2	2
CO4	3	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3

Text Books							
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	The Engineering Handbook	Richard C.Dorf	CRC Press	2 nd edn, 2004			
2	The Innovator's DNA	Clayton M. Christensenand Jeffrey H. Dyer	Harvard Business Review Press;	Revised edition (June 4, 2019)			
3	Start with Why	Simon sinek	Portfolio	Reprint edition (December 27, 2011)			
4	Business Model Generation	Alexander Osterwalder & Yves Pigneur	Wiley	2010			
5	The Engineering Entrepreneur: A Practical Guide to Starting and Running a Successful Engineering Business in India	Saibal Gupta and Ashok Jhunjhunwala	Sage Publications	2011			
6	Innovation and Entrepreneurship for Engineers	Bharat Bhushan and Seema Bhushan	CRS Press	2016			
7	Indian Patent Law	P. Narayanan	Eastern Book Company	2 nd edn/ 2020			
8	The Law of Copyright and Designs	B.L. Wadehra	Universal Law	5 th edn/2010			
9	Intellectual Property Rights (Including IPR in the Digital Age)	Prabuddha Ganguli	Tata McGraw-Hill Education	2001			
10	The Startup India Manifesto: A Guide to the Indian Startup Ecosystem	Rashmi Bansal and Deepinder Goyal	Westland Publications	2020			

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING WORKSHOP

(ME)

Course Code	GCESL208	CIA Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:2:0	ESE Marks (Internal only)	50
Credits	1	ESE Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. Demonstrate safety measures against electrical shocks
- 2. Develop familiarity with transformers, rheostats, batteries and earthing schemes
- **3.** Develop the connection diagram and identify the suitable accessories necessary for wiring simple electric circuits
- 4. Identify various electronic components
- **5.** Operate various measuring instruments
- 6. Design simple electronic circuits on breadboard and PCB
- 7. Build the ability to work in a team with good interpersonal skills.

Expt. No.	Experiments (Minimum of 7 Experiments to be done)
1	 a) Demonstrate the precautionary steps adopted in case of Electrical shocks. b) Identify different types of cables, wires, switches, fuses, fuse carriers, MCB, ELCB and MCCB, familiarise the ratings.
2	Wiring of a simple light circuit for light/ fan point (PVC conduit wiring) and a 6A plug socket with individual control.
3	Wiring of light/fan circuit using two-way switches. (Staircase wiring)
4	Wiring of fluorescent lamp and a power plug (16 A) socket with a control switch.
5	Wiring of power distribution arrangement using single phase MCB distribution board with ELCB, main switch and Energy meter.

	Familiarization of step up and step-down transformers, (use low voltage				
6	transformers) Measurement and representation of voltage and waveform to scale in				
	graph sheet with the help of CRO				
	Familiarization of rheostats, measurement of potential across resistance elements				
7	and introducing the concept of relative potential using a DC circuit.				
	a) Identify battery specifications using different types of batteries. (Lead acid,				
	Li lon.NiCd etc.)				
8	b) Familiarize different types of earthing (Pine, Plate Farthing, Mat Schemes) and				
	ground enhancing materials (GEM).				
	ELECTRONICS WORKSHOP (Minimum of 7 Experiments to be done)				
	Familiarization/Identification of electronic components with specification				
1	(Functionality, type, size, colour coding, package, symbol and cost of -Active, Passive,				
-	Electrical, Electronic, Electro-mechanical, Wires, Cables, Connectors, Fuses, Switches,				
	Relays, Crystals, Displays, Fasteners, Heat sink etc.)				
2	Drawing of electronic circuit diagrams using BIS/IEEE symbols and Interpret data				
2	sheets of discrete components and IC's				
	Familiarization/Application of testing instruments and commonly used tools				
3	Multimeter, Function generator, Power supply, CRO, DSO.				
	Soldering iron, Desoldering pump, Pliers, Cutters, Wire strippers, Screw drivers,				
	Tweezers, Crimping tool, Hot air soldering and de- soldering station				
4	Testing of electronic components using multimeter - Resistor, Capacitor, Diode,				
	Transistor and JFET.				
5	Printed circuit boards (PCB) - Types, Single sided, Double sided, PTH, Processing				
5	methods.				
	Design and fabrication of a single sided PCB for a simple circuit.				
	Inter-connection methods and soldering practice.				
6	Bread board. Wrapping, Crimping, Soldering - types - selection of materials and safety				
	precautions. Soldering practice in connectors and general-purpose PCB, Crimping.				
	Accompling of electronic circuit/outom on concretent surges DCD, test and show the				
	Assembling of electronic circuit/system on general purpose PCB, test and snow the				
7	 Fixed voltage power supply with transformer 				
	Rectifier diode				

	• Capacitor filter
	• Zener/IC regulator
	 Square wave generation using IC 555 timer in IC base.
8	Assembling of electronic circuits using SMT (Surface Mount Technology) stations.
9	Introduction to EDA tools (such as KiCad or XCircuit)

Course Assessment Method (CIA: 50 marks, ESE: 50 marks)

Continuous Internal Assessment Marks (CIA):

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Total
5	45	50

End Semester Examination Marks (ESE): (Internal evaluation only)

Procedure/ Preparatory work/Design / Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Minimum Pass Mark: The requirement for passing the lab course included in the firstyear curriculum is that the student must score a minimum of 50% overall, combining marks from both Continuous Internal Evaluation (CIE) and End Semester Examination (ESE). There is no separate minimum requirement for each component.
- There will not be any relaxation in the attendance requirement.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate safety measures against electrical shocks	К2
CO2	Familiarise with transformers, rheostats, batteries and earthing Schemes	К2
CO3	Illustrate the connection diagram and identify the suitable accessories necessary for wiring simple electric circuits	КЗ
CO4	Identify various electronic components	К2
CO5	Select and Operate various measuring instruments	К3
CO6	Apply the design procedure of simple electronic circuits on breadboard and PCB	КЗ
CO7	Build the ability to work in a team with good interpersonal skills	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1						3						2
CO2	2					2	2					2
CO3	2					2						2
CO4	3					2						3
CO5	3				3	2			2			3
CO6	3		3	2	3	2	2		2			3
CO7									3	2		2

	Text Books							
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Electrical Design Estimating and Costing	K B Raina and S K Bhattacharya	New Age International Publishers	2/e 2024				
2	Electrical Systems Design	M K Giridharan	l K International Publishing House Pvt. Ltd	3/e 2022				
3	Basic Electrical Engineering	D P Kothari and I J Nagrath	Tata McGraw Hill	4/e 2019				
4	Basic Electronics and Linear Circuits	NN Bhargava, D C Kulshreshtha and S C Gupta	Mc Graw Hill	2/e 2017				

Continuous Assessment with equal weightage for both specializations (45 Marks)

1. Preparation and Pre-Lab Work (10 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (15 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (10 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (10 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Assessment Pattern for End Semester Examination with equal weightage in both

specializations (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

CIVIL ENGINEERING DRAFTING LAB

(**CE**)

Course Code	PCCEL208	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:2:0	ESE Marks	50
Credits	1	ESE Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GCEST104/ Equivalent	Course Type	Practical

Course Objectives:

1. To introduce the fundamentals of Civil Engineering Drawing and understand the principles of planning.

2. To enable students to learn the drafting of buildings manually and using drafting software.

Details of Experiment

Expt. No	Experiment
1	Introduction to Civil Engineering Drawing, Concept of Scale, Plan, Section and Elevation. Drawing tools and accessories, Manual and Computer Aided Drafting Draw the view of simple objects (books, shelves, benches, etc.) adopting appropriate Scales
2	Draw sectional details and elevation of paneled doors.
3	Draw sectional details and elevation of wooden glazed window.
4	Draw elevation, section and detailing of connection between members for steel roof Truss
5	Draw plan, section and elevation of dog legged staircase
6	Prepare a model of a single storied building with card board from given drawings (Not expected to complete in the lab hours)
7	Draw plan, section and elevation of single storied residential building from the given line sketch.
8	Draw plan, section and elevation of two-storied framed building from the given line Sketch

9	Draw plan, section and elevation of an industrial building.
10	Introduction to Auto CAD: Preparation of CAD drawing of any of the building components (Experiments 2-5)
11	Preparation of CAD drawing of plan, section and elevation of single storied residential building (Experiment 7).

Course Assessment Method (CIE: 50 Marks, ESE 50 Marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work, experiments, Viva andTimely completion of Lab Reports / Record. (Continuous Assessment)	Internal Exam	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Tot al
10	15	10	10	5	50

Mandatory requirements for ESE:

• Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.

Course Outcomes (COs)

At the end of the course the student will be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate ability to organize civil engineering drawings systematically and professionally	K2
CO2	Illustrate the detailing of building components like doors, windows, roof trusses etc.	K2
CO3	Develop the sketch of plan, front elevation and sectional elevation from line diagram.	К3

CO4	Draft the plan elevation and sectional views of the residential buildings, industrial buildings, and framed structures using	К3
	software.	

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3							3	3	2		2
CO2	3							3	3	2		2
CO3	3							3	3	2		2
CO4	3				2			3	3	2		2

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), : No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Drawing and Detailing	Dr. Balagopal T.S. Prabhu	Spades Publishers, Calicut	Revised Edition 2022		
2	2 Building Drawing With An Integrated Approach to Built Environment M. and Patki, S.		Tata McGraw Hill Publishing Company Limited, New Delhi	5 th edition 2017		
3	ilding Planning and Drawing	⁷ . Chitawadagi S.S. Bhavikatti	Dreamtech Press	2019		

References				
Sl. No Title of the Book				
1	National Building Code of India (refer the latest updates)			
2	Kerala panchayat building rules (refer the latest updates)			
3	Kerala Municipality building rules (refer the latest updates)			
4	IS962: 1989 (Reaffirmed 2022) Indian Standard Code of practice forarchitectural and building drawings			

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

5. Evaluation Pattern for End Semester Examination (50 Marks)

6. **Procedure/Preliminary Work/Design/Algorithm (10 Marks)**

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

7. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

8. **Result with Valid Inference/Quality of Outparts** (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

9. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

10. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

PROGRAMME CORE 1

	(CL)		
Course Code	PCCET205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-1-0-0	ESE Marks	60
Credits	4	ESE Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GCEST103/ Equivalent	Course Type	Theory

MECHANICS OF SOLIDS

Course Objectives:

- 1. To provide students with a fundamental understanding of the mechanics of deformable bodies and help them develop their analytical and problem-solving skills.
- 2. To introduce students to the various internal effects induced in structural members and their deformations due to different types of loading.
- 3. To enable students to determine the stress, strain, and deformation of loaded structural elements.

Module No.	Syllabus Description	Contact Hours
	Concept of stress and strain – types, stress – strain relation - Hooke's law, Young's modulus of elasticity. Stress-strain diagram of mild steel. Factor of safety, working stress. Axially loaded bars with uniform and uniformly varying cross section–stress, strain and deformation. Temperature effects, temperature stress in composite bars	
1	Shear stress and shear strain, Modulus of rigidity, simple shear, punching shear. Lateral strain, Poisson's ratio, volumetric strain. Bulk modulus of elasticity, relationships between elastic constants.	11
2	Strain energy – concept. Strain energy due to normal stress. Strain energy inbars carrying axial loads. Strain energy due to shear stress. Beams – different types. Types of loading on beams. Concept of bending moment and shear force. Relationship between intensity of load, shear force and bending moment. Shear force and bending moment diagrams of cantilever beams, simply supported beams and overhanging beams fordifferent type of loads. Point of contraflexure.	11
3	Theory of simple bending, assumptions and limitations. Calculation of normal stress in beams, moment of resistance. Shear stress in beams. Beams of uniform strength. Strain energy due to bending – calculation of strain energy in beams. Derivation of differential equation for calculating the deflection of beams – Macaulay's method.	10

SYLLABUS

	Stresses on inclined planes for uniaxial and biaxial stress fields. Principal stresses and principal planes, maximum shear stress in 2D problems Mohr's girale of stress for 2D problems	
	Short coluMin – direct and bending stress. Kern of a section Slender	
	coluMin – Euler's buckling load, slenderness ratio, limitation of Euler's	
4	12	
	Torsion of circular and hollow circular shafts, Power transmitted by	
	circularshafts and hollow circular shafts. Strain energy due to torsion.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examinati on-1 (Written)	Internal Examinati on- 2 (Written)	Internal Examinati on- 3 (Written)	Total
5	15	5	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out of which 1 question should be answered.	
• Total of 8 Questions, each carrying 3 marks	• Each question can have a maximum of 3 subdivisions.	60
(8x3 =24marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Recall the fundamental terms and theorems associated with mechanics of linear elastic deformable bodies.	K1
CO2	Explain the behavior and response of various structural elements under various loading conditions.	K2
CO3	Apply the principles of solid mechanics to calculate internal stresses/strains, stress resultants and strain energies in structural elements subjected to axial/transverse loads and bending/twisting moments.	К3
CO4	Choose appropriate principles or formula to find the elastic constants of materials making use of the information available.	К3
CO5	Perform stress transformations, identify principal planes/ stresses and maximum shear stress at a point in a structural member.	К3
CO6	Analyse the given structural member to calculate the safe load or proportion the cross section to carry the load safely.	К4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	-
CO2	2	2	-	-	-	-	-	-	-	-	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-
CO5	3	2	-	-	-	-	-	-	-	-	-	-
CO6	3	3	2	-	-	-	-	-	-	-	-	-

CO-PO Mapping Table:

Text Books						
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Mechanics of Structures	J. Shah and S. B. Junnarkar	Charotar Publishing House	^{32nd} Edition 2016		
2	A Text book of Strength of Materials	R. K. Bansal	Laxmi Publications	6 ^a Edition 2018		
3	Mechanics of Materials	B. C. Punmia, Ashok n, Arun Kumar Jain	Laxmi Publications	Revised Edition 2017		

Reference Books							
Sl. No	Title of the BookName of the Author/s		Name of the Publisher	Edition and Year			
1	Engineering Mechanics of Solids	Egor P. Popov	Prentice Hall International Series	Edition 2015			
2	Mechanics of Materials	James M Gere, S.P. Timoshenko	mes M Gere, S.P. BS Publishers and Distributors H Timoshenko				
3	Mechanics of Materials R.C. Hibbeler Pearson		• Edition 2018				
4	Strength of Materials	S. Ramamrutham and R.Narayanan	Dhanpat Rai Publishing Co	• Edition 2014			
5	Strength of Materials	Rattan	McGraw Hill Education India	Edition 2016			

Video Links (NPTEL, SWAYAM)					
Sl No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/104/105104160/				

SYLLABUS

Iodule No.	Syllabus Description	Contact Hours
1	 Basic Concepts: Introduction to Chemical Engineering, Chemical process Industry, Unit Operations and Unit Processes. Units and Dimensions, Conversion of units, Conversion of equations- problems. Composition of solids, liquids and solutions - weight percent, mole percent, molarity, normality, molality, ppm Gaseous mixtures, Composition of gaseous mixtures, Average molecular weight and density, Ideal gas law, Dalton's Law, Amagat' Law, Vander Waals equation Vapour Pressure: Effect of temperature on vapour pressure – Antoine Equation, Clausius-Clapeyron equation. Problem solving in Equations of state, Vapor Pressure calculation using EXCEL /Matlab/ SCILAB/PYTHON etc. – only for self- study /microproject/assignment. 	11
2	Material Balance for unit operations - Introduction, key component Material balance for unit operations like mixing, distillation, drying, evaporation, absorption, crystallization, extraction, leaching.	11
3	Material Balance for unit processes - Definition of terms - limiting reactant, excess reactant, percentage yield, conversion, selectivity Orsat analysis, Material Balance for combustion, Recycle, bypass and purge operations. Problem solving in Material balance using EXCEL/ Matlab/ SCILAB/ PYTHON etc only for self-study/microproject/assignment.	11
4	Energy Balance : Heat capacity of solids, liquids and gaseous mixtures, Kopp's Rule, Latent Heats-Heat of fusion, heat of vaporization, Estimation of Heat of Vaporization - Kistyakowsky Equation, Trouton's rule, Watson equation. Heat effects accompanying chemical reactions - Standard heats of reaction, standard heat of combustion, and standard heat offormation, Hess's law of constant heat summation. Effect of temperature and pressure on heat of reaction, temperature of reaction, adiabatic reaction temperature.	11

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Total
5	15	10	10	40

MATERIAL SCIENCE AND ENGINEERING

(ME)

Course Code	PCMET205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	ESE Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To recognize the importance of the microstructures and physical properties of the materials to enable the material selection process.
- **2.** To develop an understanding of the basic principles of phase transformations and apply those principles to engineering applications.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Introduction to material science: Classification of engineering materials, Structure of solids- Metallic, Ionic and covalent bonding. Properties based on atomic bonding. Crystallography: - SC, BCC, FCC, HCP structures, APF - theoretical density simple problems – Miller Indices: - crystal plane and direction - Modes of plastic deformation: - Slip and twinning	11
2	Crystal imperfections – - Point defects, Line defects, Surface defects, Volume defects. edge and screw dislocations – Burger's vector – interaction between dislocations. Polishing and etching, Metallographic characterizations of metallic materials. SEM, TEM- Grain size determination Wear, Roughness, Corrosion. Diffusion in solids, fick's laws, mechanisms, applications of diffusion in mechanical engineering, simple problems. Applications of Diffusion.	11
3	Mechanical properties: Tensile properties, Hardness and hardness measurement, Impact properties, Fatigue, Creep, DBBTT, Super plasticity. Types of steels- low, medium and high carbon steels, stainless steels, alloy steels and their applications. Properties and applications of composites, super-alloys, intermetallic- Stoichiometric and Non stoichiometric compounds- Applications. maraging steel, Titanium- Ceramics: - structures, applications	11

4	Phase diagrams: - need of alloying - classification of alloys - Hume Rothery's rule – equilibrium diagram of common types of binary systems: isomorphous (Cu- Ni) eutectic (Pb- Sn), lever rule and Gibb's phase rule. Detailed discussion on Iron- Carbon equilibrium diagram with microstructure and properties -Heat treatment: - TTT, CCT diagram, applications - Tempering- Hardenability, Jominy end quench test, applications-Surface hardening methods.	11	
---	--	----	--

Course Assessment Method

(CIA: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examinatio n- 2 (Written)	Internal Examinatio n- 3 (Written)	Total
5	15	5	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from 	Each question carries 9 marks.	
each module.	 Two questions will be given from each module, 	
• Total of 8 Questions,	out of which 1 question should be answered.	
Each carrying 3 marks		60
	Each question can have a maximum of 3	
(8x3 =24marks)	subdivisions.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Understand the crystal structures (BCC, FCC, and HCP), and their relationship with the properties.	K2

CO2	Apply metallographic techniques to analyze and interpret crystallographic defects in materials.	КЗ
CO3	Compare the material properties among different materials for material selection.	K2
CO4	Use phase diagrams to analyze and differentiate the microstructure of metallic materials	КЗ

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	2										
CO3	3	2										
CO4	3	2										

Text Books					
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Material Science and Engineering, 2014	Callister William.D	John Wiley	2014	
2	Engineering Metallurgy part-I	Higgins R.A	Arnold	1998, 6 th	

Reference Books					
SI.	Title of the Book	Name of the	Name of the	Edition	
No		Author/s	Publisher	and Year	
1	The science and engineering of materials	Donald R Askeland	Thomson		
2	Introduction to Physical Metallurgy	Avner H Sidney	Tata McGraw Hill	2009	
3	Material Science and Engineering	Raghavan V	Prentiece hall	2004	

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://archive.nptel.ac.in/courses/113/105/113105103/			
2	https://archive.nptel.ac.in/courses/113/105/113105103/			
3	https://archive.nptel.ac.in/courses/113/105/113105103/			
	https://archive.nptel.ac.in/courses/113/105/113105103/			