MAT 101	LINEAR ALGEBRA AND CALCULUS	CATEGORY	L	T	P	CREDIT	Year of Introduction
		BSC	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{4}$	2019

Preamble: This course introduces students to some basic mathematical ideas and tools which are at the core of any engineering course. A brief course in Linear Algebra familiarises students with some basic techniques in matrix theory which are essential for analysing linear systems. The calculus of functions of one or more variables taught in this course are useful in modelling and analysing physical phenomena involving continuous change of variables or parameters and have applications across all branches of engineering.

Prerequisite: A basic course in one-variable calculus and matrix theory.
Course Outcomes: After the completion of the course the student will be able to

CO 1	solve systems of linear equations, diagonalize matrices and characterise quadratic forms
CO 2	compute the partial and total derivatives and maxima and minima of multivariable functions
CO 3	compute multiple integrals and apply them to find areas and volumes of geometrical shapes, mass and centre of gravity of plane laminas
CO 4	perform various tests to determine whether a given series is convergent, absolutely convergent or conditionally convergent
CO 5	determine the Taylor and Fourier series expansion of functions and learn their applications.

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	3	3	3	2	1			1	2		2
CO 2	3	3	3	3	2	1			1	2		2
CO 3	3	3	3	3	2	1			1	2		2
CO 4	3	2	3	2	1	1			1	2		2
CO 5	3	3	3	3	2	1			1	2		2

Assessment Pattern

Bloom's Category	Continuous Assessment Tests		End Semester Examination (Marks)
	Test 1 (Marks)	Test 2 (Marks)	
Remember	10	10	20
Understand	20	20	40
Apply	20	20	40
Analyse			
Evaluate			
Create			

Mark distribution

Total Marks	CIE marks	ESE marks	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	$: 10$ marks
Continuous Assessment Test (2 numbers)	$: 25$ marks
Assignment/Quiz/Course project	$: 15$ marks

Assignments: Assignment should include specific problems highlighting the applications of the methods introduced in this course in science and engineering.

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1): Solve systems of linear equations, diagonalize matrices and characterise quadratic forms

1. A is a real matrix of order 3×3 and $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$. What can you say about the solution of $A X=$ 0 if rank of A is 1 ? 2 ? 3 ?
2. Given $A=\left[\begin{array}{ccc}3 & 0 & 2 \\ 0 & 2 & 0 \\ -2 & 0 & 0\end{array}\right]$, find an orthogonal matrix P that diagonalizes A.
3. Find out what type of conic section the following quadratic form represents

$$
17 x^{2}-30 x_{1} x_{2}+17 x_{2}^{2}=128
$$

4. The matrix $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$ has an eigen value5 with corresponding Eigen vector $X=$ $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$. Find $A^{5} X$

Course Outcome 2 (CO2): compute the partial and total derivatives and maxima and minima of multivariable functions

1. Find the slope of the surface $z=x^{2} y+5 y^{3}$ in the x-direction at the point $(1,-2)$
2. Given the function $w=x y+z$, use chain rule to find the instantaneous rate of change of w at each point along the curve $x=\cos t, y=\sin t, z=t$
3. Determine the dimension of rectangular box open at the top, having a volume 32 cubic ft and requiring the least amount of material for it's construction.

Course Outcome 3(CO3): compute multiple integrals and apply them to find areas and volumes of geometrical shapes, mass and centre of gravity of plane laminas.

1. Evaluate $\iint_{D}(x+2 y) D A$ where D is the region bounded by the parabolas $y=2 x^{2}$ and $y=1+x^{2}$
2. Explain how you would find the volume under the surface $z=f(x, y)$ and over a specific region D in the $x y$ plane using (i) double integral (ii) triple integral?
3. Find the mass and centre of gravity of a triangular lamina with vertices $(0,0),(2,1),(0,3)$ if the density function is $f(x, y)=x+y$
4. Use spherical coordinates to evaluate $\iiint_{B}\left(x^{2}+y^{2}+z^{2}\right)^{3} d V$ where B is the unit ball defined by $B=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\}$

Course Outcome 4 (CO4): perform various tests to determine whether a given series is convergent, absolutely convergent or conditionally convergent.

1. What is the difference between a sequence and a series and when do you say that they are convergent? Divergent?
2. Determine whether the series $\sum_{n=1}^{n=\infty} \frac{5}{2 n^{2}+4 n+3}$ converges or diverges.
3. Is the series $\sum_{n=1}^{n=\infty} \frac{(-1)^{n-1}}{n}$ convergent? Absolutely convergent? Conditionally convergent?

Course Outcome 5 (CO5): determine the Taylor and Fourier series expansion of functions and learn their applications.

1. Assuming the possibility of expansion find the Maclaurin series expansion of
$f(x)=(1+x)^{k}$ for $|x|<1$ where k is any real number. What happens if k is a positive integer?
2. Use Maclaurin series of $\ln (1+x),-1<x \leq 1$ to find an approximate value of $\ln 2$.
3. Find the Fourier series of the function $f(x)=x^{2},-2 \leq x<2, f(x+4)=f(x)$. Hence using Parseval's identity prove that $1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots=\frac{\pi^{4}}{90}$
4. Expand the function $f(x)=x(0<x<1 / 2)$ into a (i) Fourier sine series (ii) Fourier cosine series.

Model Question paper

QP CODE:

Reg No: \qquad
Name : \qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, MONTH \& YEAR

Course Code: MAT 101

Max. Marks: 100
Duration: 3 Hours

LINEAR ALGEBRA AND CALCULUs

(2019-Scheme)

(Common to all branches)

PART A

(Answer all questions, each question carries 3 marks)

1. Determine the rank of the matrix $A=\left[\begin{array}{rrr}1 & 2 & -1 \\ -2 & -4 & 2 \\ 3 & 6 & -3\end{array}\right]$.
2. Write down the eigen values of $=\left[\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right]$. What are the eigen values of $P^{-1} A P$ where $P=\left[\begin{array}{cc}-4 & 2 \\ 3 & -1\end{array}\right] ?$
3. Find $f_{x}(1,3)$ and $f_{y}(1,3)$ for the function $f(x, y)=2 x^{3} y^{2}+2 y+4 x$.
4. Show that the function $u(x, t)=\sin (x-c t)$ is a solution of the equation $\quad \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$
5. Use double integral to find the area of the region enclosed between the parabolas $y=\frac{1}{2} x^{2}$ and the line $y=2 x$.
6. Use polar coordinates to evaluate the area of the region bounded by $x^{2}+y^{2}=4$, the line $y=x$ and the y axis in the first quadrant
7. Test the convergence of the series $\sum_{k=1}^{\infty} \frac{k}{k+1}$.
8. Test the convergence of the alternating series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{k}$ using Leibnitz test.
9. Find the Taylor series expansion of $\sin \pi x$ about $x=\frac{1}{2}$.
10. Find the values to which the Fourier series of
$f(x)=x$ for $-\pi<x<\pi$, with $f(x+2 \pi)=f(x)$ converges
$(10 \times 3=30)$

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -I

11. (a) Solve the following system of equations

$$
\begin{gathered}
y+z-2 w=0 \\
2 x-3 y-3 z+6 w=2 \\
4 x+y+z-2 w=4
\end{gathered}
$$

(b) Find the eigen values and eigen vectors of the matrix $\left[\begin{array}{rrr}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
12. (a) Diagonalize the matrix $\left[\begin{array}{rrr}-1 & 2 & -2 \\ 2 & 4 & 1 \\ 2 & 1 & 4\end{array}\right]$
(b) What kind of conic section the quadratic form $3 x_{1}^{2}+22 x_{1} x_{2}+3 x_{2}^{2}=0$ represents? Transform it to principal axes.

Module - II

13. (a) Find the local linear approximation to $f(x, y)=\sqrt{x^{2}+y^{2}}$ at the point $(3,4)$. Use it to approximate $f(3.04,3.98)$
(b) Let $w=\sqrt{x^{2}+y^{2}+z^{2}}, \quad x=\cos \theta, y=\sin \theta, z=\tan \theta$. Use chain rule to find $\frac{d w}{d \theta}$ when $\theta=\frac{\pi}{4}$.
14. (a) Let $z=f(x, y)$ where $x=r \cos \theta, y=r \sin \theta$, prove that
$\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=\left(\frac{\partial z}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial z}{\partial \theta}\right)^{2}$.
(b) Locate all relative maxima, relative minima and saddle points
$f(x, y)=x y+\frac{a^{3}}{x}+\frac{b^{3}}{y}(a \neq 0, b \neq 0)$.

Module - III

15. (a) Evaluate $\iint_{D}\left(2 x^{2} y+9 y^{3}\right) d x d y$ where D is the region bounded by $y=\frac{2}{3} x$ and $y=2 \sqrt{x}$
(b) Evaluate $\int_{0}^{4} \int_{\sqrt{y}}^{2} e^{x^{3}} d x d y$ changing the order of integration.
16. (a) Find the volume of the solid bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $y+z=4$ and $z=0 .$.
(b) Evaluate $\iiint \sqrt{1-x^{2}-y^{2}-z^{2}} d x d y d z$, taken throughout the volume of the sphere $x^{2}+y^{2}+z^{2}=1$, by transforming to spherical polar coordinates

Module - IV

17. (a) Test the convergence of the series
(i) $\quad \sum_{k=1}^{\infty} \frac{k^{k}}{k!}$
(ii) $\sum_{k=2}^{\infty}\left(\frac{4 k-5}{2 k+1}\right)^{k}$
(b) Determine the convergence or divergence of the series $\sum_{k=1}^{\infty}(-1)^{k} \frac{(2 k-1)!}{3^{k}}$
18. (a) Check whether the series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{(2 k)!}{(3 k-2)!}$ is absolutely convergent, conditionally convergent or divergent.
(b) Test the convergence of the series $1+\frac{1.2}{1.3}+\frac{1.2 .3}{1.3 .5}+\frac{1.2 .3 .4}{1.3 .5 .7}+\cdots$

Module - V

19. (a) Obtain the Fourier series of for $f(x)=e^{-x}$, in the interval $0<x<2 \pi$.with $f(x+$ $2 \pi)=f(x)$. Hence deduce the value of $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{1+n^{2}}$.
(b) Find the half range sine series of $f(x)= \begin{cases}\frac{2 k L}{x} & \text { if } 0<x<\frac{L}{2} \\ \frac{2 k(L-x)}{L} & \text { if } \frac{L}{2}<x<L\end{cases}$
20. (a)Expand $(1+x)^{-2}$.as a Taylor series about $x=0$ and state the region of convergence of the series.
(b) Find the Fourier series for $f(x)=x^{2}$ in the interval $-\pi<x<\pi$
with $f(x+2 \pi)=f(x)$. Hence show that $\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\cdots=\frac{\pi^{4}}{90}$.
$(14 \times 5=70)$

Syllabus

Module 1 (Linear algebra)

(Text 2: Relevant topics from sections 7.3, 7.4, 7.5, 8.1,8.3,8.4)

Systems of linear equations, Solution by Gauss elimination, row echelon form and rank of a matrix, fundamental theorem for linear systems (homogeneous and non-homogeneous, without proof), Eigen values and eigen vectors. Diagonaliztion of matrices, orthogonal transformation, quadratic forms and their canonical forms.

Module 2 (multivariable calculus-Differentiation)

(Text 1: Relevant topics from sections $13.3,13.4,13.5,13.8$)

Concept of limit and continuity of functions of two variables, partial derivatives, Differentials, Local Linear approximations, chain rule, total derivative, Relative maxima and minima, Absolute maxima and minima on closed and bounded set.

Module 3(multivariable calculus-Integration)

(Text 1: Relevant topics from sections 14.1, 14.2, 14.3, 14.5, 14.6, 14.8)

Double integrals (Cartesian), reversing the order of integration, Change of coordinates (Cartesian to polar), finding areas and volume using double integrals, mass and centre of gravity of inhomogeneous laminas using double integral. Triple integrals, volume calculated as triple integral, triple integral in cylindrical and spherical coordinates (computations involving spheres, cylinders).

Module 4 (sequences and series)

(Text 1: Relevant topics from sections 9.1, 9.3, 9.4, 9.5, 9.6)

Convergence of sequences and series, convergence of geometric series and p-series(without proof), test of convergence (comparison, ratio and root tests without proof); Alternating series and Leibnitz test, absolute and conditional convergence.

Module 5 (Series representation of functions)

(Text 1: Relevant topics from sections 9.8, 9.9. Text 2: Relevant topics from sections 11.1, 11.2, 11.6)

Taylor series (without proof, assuming the possibility of power series expansion in appropriate domains), Binomial series and series representation of exponential, trigonometric, logarithmic functions (without proofs of convergence); Fourier series, Euler formulas, Convergence of Fourier series (without proof), half range sine and cosine series, Parseval's theorem (without proof).

Text Books

1. H. Anton, I. Biven,S.Davis, "Calculus", Wiley, $10^{\text {th }}$ edition, 2015.
2. Erwin Kreyszig, Advanced Engineering Mathematics, $10^{\text {th }}$ Edition, John Wiley \& Sons, 2016.

Reference Books

1. J. Stewart, Essential Calculus, Cengage, $2^{\text {nd }}$ edition, 2017
2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9 th Edition, Pearson, Reprint, 2002.
3. Peter V. O'Neil, Advanced Engineering Mathematics, Cengage, 7th Edition, 2012
4. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
5. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36 Edition, 2010.

Course Contents and Lecture Schedule

No	Topic	No. of Lectures
$\mathbf{1}$	Linear Algebra (10 hours)	
1.1	Systems of linear equations, Solution by Gauss elimination	1
1.2	Row echelon form, finding rank from row echelon form, fundamental theorem for linear systems	3
1.3	Eigen values and eigen vectors	2
1.4	Diagonaliztion of matrices, orthogonal transformation, quadratic forms	4

	and their canonical forms.	
2	Multivariable calculus-Differentiation (8 hours)	
2.1	Concept of limit and continuity of functions of two variables, partial derivatives	2
2.2	Differentials, Local Linear approximations	2
2.3	Chain rule, total derivative	2
2.4	Maxima and minima	2
3	Multivariable calculus-Integration (10 hours)	
3.1	Double integrals (Cartesian)-evaluation	2
3.2	Change of order of integration in double integrals, change of coordinates (Cartesian to polar),	2
3.3	Finding areas and volumes, mass and centre of gravity of plane laminas	3
3.4	Triple integrals	3
4	Sequences and series (8 hours)	
4.1	Convergence of sequences and series, geometric and p-series	2
4.2	Test of convergence(comparison, ratio and root)	4
4.3	Alternating series and Leibnitz test, absolute and conditional convergence	2
5	Series representation of functions (9 hours)	
5.1	Taylor series, Binomial series and series representation of exponential, trigonometric, logarithmic functions;	3
5.2	Fourier series, Euler formulas, Convergence of Fourier series(Dirichlet's conditions)	3
5.3	Half range sine and cosine series, Parseval's theorem.	3

HUN 101	LIFE SKILLS	CATEGORY	L	T	P	CREDIT	YEAR INTRODUCTION
		MNC	2	0	2	---	2019

Preamble: Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underly personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.

Prerequisite: None

Course Outcomes: After the completion of the course the student will be able to

CO 1	Define and Identify different life skills required in personal and professional life
CO 2	Develop an awareness of the self and apply well-defined techniques to cope with emotions and stress.
CO 3	Explain the basic mechanics of effective communication and demonstrate these through presentations.
CO 4	Take part in group discussions
CO 5	Use appropriate thinking and problem solving techniques to solve new problems
CO 6	Understand the basics of teamwork and leadership

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO
11												

Mark distribution

Total Marks	CIE	ESE	ESE Duration
100	50	50	2 hours

Continuous Internal Evaluation

Total Marks: 50

Attendance	$: 10$ marks
Regular assessment	$: 15$ marks
Series test (one test only, should include first three modules)	$: 25$ marks

Regular assessment

$>$ Group Discussion (Marks: 9)
Create groups of about 6 students each and engage them on a GD on a suitable topic for about 20 minutes. Parameters to be used for evaluation are as follows:

- Communication Skills : 3 marks
- Subject Clarity $: 2$ marks
- Group Dynamics :2 marks
- Behaviours \& Mannerisms : 2 marks
> Presentation Skills (Marks: 6)
Identify a suitable topic and ask the students to prepare a presentation (preferably a power point presentation) for about 10 minutes. Parameters to be used for evaluation are as follows:
- Communication Skills :2 marks
- Platform Skills :2 marks
- Subject Clarity/Knowledge $: 2$ marks

End Semester Examination

Total Marks: 50
Time: 2 hrs.

Part A: Short answer question (25 marks)

There will be one question from each MODULE (five questions in total, five marks each). Each question should be written in about maximum of 400 words. Parameters to be used for evaluation are as follows:
(i) Content Clarity/Subject Knowledge
(ii) Presentation style
(iii) Organization of content

Part B: Case Study (25 marks)

The students will be given a case study with questions at the end. The students have to analyze the case and answer the question at the end. Parameters to be used for evaluation are as follows:
(i) Analyze the case situation
(ii) Key players/characters of the case
(iii) Identification of the problem (both major \& minor if exists)
(iv) Bring out alternatives
(v) Analyze each alternative against the problem
(vi) Choose the best alternative
(vii) Implement as solution
(viii) Conclusion
(ix) Answer the question at the end of the case

Course Level Assessment Questions

Course Outcome 1 (CO1):

1. List 'life skills' as identified by WHO
2. What do you mean by effective communication?
3. What are the essential life skills required by a professional?

Course Outcome 2 (CO2)

1. Identify an effective means to deal with workplace stress.
2. How can a student apply journaling to stress management?
3. What is the PATH method? Describe a situation where this method can be used effectively.

Course Outcome 3(CO3):

1. Identify the communication network structure that can be observed in the given situations. Describe them.
(a) A group discussion on development.
(b) An address from the Principal regarding punctuality.
(c) A reporter interviewing a movie star.
(d) Discussing the answers of a test with a group of friends.
2. Elucidate the importance of non-verbal communication in making a presentation
3. Differentiate between kinesics, proxemics, and chronemics with examples.

Course Outcome 4 (CO4):

1. How can a participant conclude a group discussion effectively?
2. 'Listening skills are essential for effectively participating in a group discussion.' Do you agree? Substantiate your answer.

Course Outcome 5 (CO5):

1. Illustrate the creative thinking process with the help of a suitable example
2. Translate the following problem from verbal to graphic form and find the solution: In a quiz, Ananth has 50 points more than Bimal, Chinmay has 60 points less than Ananth, and Dharini is 20 points ahead of Chinmay. What is the difference in points between Bimal and Dharini?
3. List at least five ways in which the problem "How to increase profit?" can be redefined

Course Outcome 6 (CO6):

1. A group of engineers decided to brainstorm a design issue on a new product. Since no one wanted to disagree with the senior members, new ideas were not flowing freely. What group dynamics technique would you suggest to avoid this 'groupthink'? Explain the procedure.
2. "A group focuses on individual contribution, while a team must focus on synergy." Explain.
3. Identify the type of group formed / constituted in each of the given situations
a) A Police Inspector with subordinates reporting to him
b) An enquiry committee constituted to investigate a specific incident
c) The Accounts Department of a company
d) A group of book lovers who meet to talk about reading

Syllabus

Module 1

Overview of Life Skills: Meaning and significance of life skills, Life skills identified by WHO: Selfawareness, Empathy, Critical thinking, Creative thinking, Decision making, problem solving, Effective communication, interpersonal relationship, coping with stress, coping with emotion.

Life skills for professionals: positive thinking, right attitude, attention to detail, having the big picture, learning skills, research skills, perseverance, setting goals and achieving them, helping others, leadership, motivation, self-motivation, and motivating others, personality development, IQ, EQ, and SQ

Module 2

Self-awareness: definition, need for self-awareness; Coping With Stress and Emotions, Human Values, tools and techniques of SA: questionnaires, journaling, reflective questions, meditation, mindfulness, psychometric tests, feedback.

Stress Management: Stress, reasons and effects, identifying stress, stress diaries, the four A's of stress management, techniques, Approaches: action-oriented, emotion-oriented, acceptanceoriented, resilience, Gratitude Training,

Coping with emotions: Identifying and managing emotions, harmful ways of dealing with emotions, PATH method and relaxation techniques.

Morals, Values and Ethics: Integrity, Civic Virtue, Respect for Others, Living Peacefully. Caring, Sharing, Honesty, Courage, Valuing Time, Time management, Co operation, Commitment, Empathy, Self-Confidence, Character, Spirituality, Avoiding Procrastination, Sense of Engineering Ethics.

Module 3

$21^{\text {st }}$ century skills: Creativity, Critical Thinking, Collaboration, Problem Solving, Decision Making, Need for Creativity in the 21st century, Imagination, Intuition, Experience, Sources of Creativity, Lateral Thinking, Myths of creativity, Critical thinking Vs Creative thinking, Functions of Left Brain \& Right brain, Convergent \& Divergent Thinking, Critical reading \& Multiple Intelligence.

Steps in problem solving: Problem Solving Techniques, Six Thinking Hats, Mind Mapping, Forced Connections. Analytical Thinking, Numeric, symbolic, and graphic reasoning. Scientific temperament and Logical thinking.

Module 4

Group and Team Dynamics: Introduction to Groups: Composition, formation, Cycle, thinking, Clarifying expectations, Problem Solving, Consensus, Dynamics techniques, Group vs Team, Team Dynamics, Virtual Teams. Managing team performance and managing conflicts, Intrapreneurship.

Module 5

Leadership: Leadership framework, entrepreneurial and moral leadership, vision, cultural dimensions. Growing as a leader, turnaround leadership, managing diverse stakeholders, crisis management. Types of Leadership, Traits, Styles, VUCA Leadership, Levels of Leadership, Transactional vs Transformational Leaders, Leadership Grid, Effective Leaders.

Lab Activities

Verbal

Effective communication and Presentation skills.
Different kinds of communication; Flow of communication; Communication networks, Types of barriers; Miscommunication
Introduction to presentations and group discussions.
Learning styles: visual, aural, verbal, kinaesthetic, logical, social, solitary; Previewing, KWL table, active listening, REAP method
Note-taking skills: outlining, non-linear note-taking methods, Cornell notes, three column note taking.
Memory techniques: mnemonics, association, flashcards, keywords, outlines, spider diagrams and mind maps, spaced repetition.
Time management: auditing, identifying time wasters, managing distractions, calendars and checklists; Prioritizing - Goal setting, SMART goals; Productivity tools and apps, Pomodoro technique.

Non Verbal:

Non-verbal Communication and Body Language: Forms of non-verbal communication; Interpreting body-language cues; Kinesics; Proxemics; Chronemics; Effective use of body language, Communication in a multi cultural environment.

Reference Books

1. Shiv Khera, You Can Win, Macmillan Books, New York, 2003.
2. Barun K. Mitra, "Personality Development \& Soft Skills", Oxford Publishers, Third impression, 2017.
3. ICT Academy of Kerala, "Life Skills for Engineers", McGraw Hill Education (India) Private Ltd., 2016.
4. Caruso, D. R. and Salovey P, "The Emotionally Intelligent Manager: How to Develop and Use the Four Key Emotional Skills of Leadership", John Wiley \& Sons, 2004.
5. Kalyana, "Soft Skill for Managers"; First Edition; Wiley Publishing Ltd, 2015.
6. Larry James, "The First Book of Life Skills"; First Edition, Embassy Books, 2016.
7. Shalini Verma, "Development of Life Skills and Professional Practice"; First Edition; Sultan Chand (G/L) \& Company, 2014.
8. Daniel Goleman, "Emotional Intelligence"; Bantam, 2006.
9. Remesh S., Vishnu R.G., "Life Skills for Engineers", Ridhima Publications, First Edition, 2016.
10. Butterfield Jeff, "Soft Skills for Everyone", Cengage Learning India Pvt Ltd; 1 edition, 2011.
11. Training in Interpersonal Skills: Tips for Managing People at Work, Pearson Education, India; 6 edition, 2015.
12. The Ace of Soft Skills: Attitude, Communication and Etiquette for Success, Pearson Education; 1 edition, 2013.

PHL $\mathbf{1 2 0}$	ENGINEERING PHYSICS LAB	CATEGORY	\mathbf{L}	\mathbf{T}	\mathbf{P}	CREDIT	YEAR OF INTRODUCTION
		BSC	0	0	2	1	2019

Preamble: The aim of this course is to make the students gain practical knowledge to co-relate with the theoretical studies and to develop practical applications of engineering materials and use the principle in the right way to implement the modern technology.

Prerequisite: Higher secondary level Physics

Course Outcomes: After the completion of the course the student will be able to

CO 1	Develop analytical/experimental skills and impart prerequisite hands on experience for engineering laboratories
CO 2	Understand the need for precise measurement practices for data recording
CO 3	Understand the principle, concept, working and applications of relevant technologies and comparison of results with theoretical calculations
CO 4	Analyze the techniques and skills associated with modern scientific tools such as lasers and fiber optics
CO 5	Develop basic communication skills through working in groups in performing the laboratory experiments and by interpreting the results

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3				3			1	2			1
CO 2	3				3			1	2			1
CO 3	3				3			1	2			1
CO 4	3				3			1	2			1
CO 5	3				3			1	2			1

Mark distribution

Total Marks	CIE	ESE	ESE Marks Marks

Continuous Internal Evaluation Pattern:

Attendance	$: 20$ marks
Class work/ Assessment/Viva-voce	$: 50$ marks
End semester examination (Internally by college)	$: 30$ marks

End Semester Examination Pattern: Written Objective Examination of one hour

SYLLABUS

LIST OF EXPERIMENTS

(Minimum 8 experiments should be completed)

1. CRO-Measurement of frequency and amplitude of wave forms
2. Measurement of strain using strain gauge and wheatstone bridge
3. LCR Circuit - Forced and damped harmonic oscillations
4. Melde's string apparatus- Measurement of frequency in the transverse and longitudinal mode
5. Wave length measurement of a monochromatic source of light using Newton's Rings method.
6. Determination of diameter of a thin wire or thickness of a thin strip of paper using air wedge method.
7. To measure the wavelength using a millimeter scale as a grating.
8. Measurement of wavelength of a source of light using grating.
9. Determination of dispersive power and resolving power of a plane transmission grating
10.Determination of the particle size of lycopodium powder
11.Determination of the wavelength of He-Ne laser or any standard laser using diffraction grating
12.Calculate the numerical aperture and study the losses that occur in optical fiber cable.
13.I-V characteristics of solar cell.
14.LED Characteristics.
10. Ultrasonic Diffractometer- Wavelength and velocity measurement of ultrasonic waves in a liquid
16.Deflection magnetometer-Moment of a magnet- Tan A position.

Reference books

1. S.L.Gupta and Dr.V.Kumar, "Practical physics with viva voice", Pragati PrakashanPublishers, Revised Edition, 2009
2. M.N.Avadhanulu, A.A.Dani and Pokely P.M, "Experiments in Engineering Physics", S.Chand\&Co,2008
3. S. K. Gupta, "Engineering physics practicals", Krishna Prakashan Pvt. Ltd., 2014
4. P. R. Sasikumar "Practical Physics", PHI Ltd., 2011.

PHT 100	ENGINEERING PHYSICS A (FOR CIRCUIT BRANCHES)	CATEGORY	L	T	P	CREDIT	YEAR OF INTRODUCTION
		BSC	3	1	0	4	2019

Preamble: The aim of the Engineering Physics Program is to offer students a solid background in the fundamentals of Physics and to impart that knowledge in engineering disciplines. The program is designed to develop scientific attitudes and enable the students to correlate the concepts of Physics with the core programmes

Prerequisite: Higher secondary level Physics, Mathematical course on vector calculus, differential equations and linear algebra

Course Outcomes: After the completion of the course the student will be able to

CO 1	Compute the quantitative aspects of waves and oscillations in engineering systems.
CO 2	Apply the interaction of light with matter through interference, diffraction and identify these phenomena in different natural optical processes and optical instruments.
CO 3	Analyze the behaviour of matter in the atomic and subatomic level through the principles of quantum mechanics to perceive the microscopic processes in electronic devices.
CO 4	Classify the properties of magnetic materials and apply vector calculus to static magnetic fields and use Maxwell's equations to diverse engineering problems
CO 5	Analyze the principles behind various superconducting applications, explain the working of solid state lighting devices and fibre optic communication system

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	2						1	2			1
CO 2	3	2						1	2			1
CO 3	3	2						1	2			1
CO 4	3	1						1	2			1
CO 5	3	1						1	2			1

Assessment Pattern

Bloom's Category	Continuous Assessment Tests		End Semester Examination (Marks)
	Test 1 (Marks)	Test 2 (Marks)	
Remember	15	15	50
Understand	25	25	20
Apply	10	10	

Analyse			
Evaluate			
Create			

Mark distribution

Total Marks	CIE marks	ESE marks	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	$: 10$ marks
Continuous Assessment Test (2 numbers)	$: 25$ marks
Assignment/Quiz/Course project	$: 15$ marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

1. Explain the effect of damping force on oscillators.
2. Distinguish between transverse and longitudinal waves.
3. (a) Derive an expression for the fundamental frequency of transverse vibration in a stretched string.
(b) Calculate the fundamental frequency of a string of length 2 m weighing 6 g kept stretched by a load of 600 kg .

Course Outcome 2 (CO2):

1. Explain colours in thin films.
2. Distinguish between Fresnel and Fraunhofer diffraction.
3. (a) Explain the formation of Newton's rings and obtain the expression for radii of bright and dark rings in reflected system. Also explain how it is used to determine the wavelength of a monochromatic source of light.
(b) A liquid of refractive index μ is introduced between the lens and glass plate.

What happens to the fringe system? Justify your answer.

Course Outcome 3 (CO3):

1. Give the physical significance of wave function ?
2. What are excitons ?
3. (a) Solve Schrodinger equation for a particle in a one dimensional box and obtain its energy eigen values and normalised wave functions.
(b) Calculate the first three energy values of an electron in a one dimensional box of width $1 \mathrm{~A}^{0}$ in electron volt.

Course Outcome 4 (CO4):

1. Compare displacement current and conduction current.
2. Mention any four properties of ferro magnetic materials.
3. (a) Starting from Maxwell's equations, derive the free space electromagnetic wave equation and show that velocity of electromagnetic wave is $1 /\left(\mu_{0} \varepsilon_{0}\right)^{1 / 2}$
(b) An electromagnetic wave is described by $E=100 \exp 8 \pi i\left[10^{14} t-\left(10^{6} z / 3\right)\right] V / m$. Find the direction of propagation of the wave,speed of the wave and magnetic flux density in the wave.

Course Outcome 5 (CO5):

1. Explain the working of a solar cell.
2. Distinguish between Type I and Type II super conductors.
3. (a) Define numerical aperture and derive an expression for it.
(b) Explain the working of intensity modulated fibre optic sensor.

Model Question paper

QP CODE:
PAGES:3
Reg No: \qquad
Name \qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, MONTH \& YEAR

Course Code: PHT 100

Course Name: Engineering Physics A

Max. Marks: 100

Duration: 3 Hours

PART A

Answer all Questions. Each question carries 3 Marks

1. Compare electrical and mechanical oscillators
2. Distinguish between longitudinal and transverse waves
3. Write a short note on antireflection coating.
4. Diffraction of light is not as evident in daily experience as that of sound waves. Give reason.
5. State and explain Heisenberg's Uncertainty principle. With the help of it explain natural line broadening.
6. Explain surface to volume ratio of nanomaterials.
7. State Faraday's laws of electromagnetic induction.
8. Compare displacement current and conduction current
9. List four important applications of superconductors.
10. Give the working principle of LED.
$(10 \times 3=30)$
PART B
Answer any one full question from each module. Each question carries 14 Marks

Module 1

11. (a) Derive the differential equation of damped harmonic oscillator and deduce its solution.Discuss the cases of over damped, critically damped and under damped cases. (10)
(b) The frequency of a tuning fork is 500 Hz and its Q factor is 7×10^{4} Find the relaxation time. Also calculate the time after which its energy becomes $1 / 10$ of its initial undamped value.(4)
12. (a) Derive an expression for the velocity of propagation of a transverse wave in a stretched string. Deduce laws of transverse vibrations.
(b) The equation of transverse vibration of a stretched string is given by $y=0.00327 \sin (72.1 x-$ 2.72 t)m, in which the numerical constants are in S.I units. Evaluate (i) Amplitude (ii) Wavelength (iii) Frequency and (iv)Velocity of the wave.

Module 2

13.(a)Explain the formation of Newton's rings and show that the radius of dark ring is proportional to the square root of natural numbers. How can we use Newton's rings experiment to determine the refractive index of a liquid.
(b) Two pieces of plane glass are placed together with a piece of paper between two at one end. Find the angle of the wedge in seconds if the film is viewed with a monochromatic light of wavelength $4800 \AA ̊$. Given $\beta=0.0555 \mathrm{~cm}$.
14. (a) Explain the diffraction due to a plane transmission grating. Obtain the grating equation.
(b) A grating has 6000 lines per cm . Find the angular separation of the two yellow lines of mercury of wavelengths 577 nm and 579 nm in the second order.
(4)

Module 3

15.(a) Derive time dependent and independent Schrodinger equations.
(b) An electron is confined to one dimensional potential box of length $2 \AA$. Calculate the energies corresponding to the first and second quantum states in eV .
16.(a) Classify nanomaterials based on dimensionality of quantum confinement and explain the following nanostructures. (i) nano sheets (ii) nano wires (iii) quantum dots.
(b) Find the de Broglie wavelength of electron whose kinetic energy is 15 eV .

Module 4

17.(a) State Poynting's Theorem. Calculate the value of Poynting vector at the surface of the sun if the power radiated by the sun is $3.8 \times 10^{26} \mathrm{~W}$ and its radius is $7 \times 10^{8} \mathrm{~m}$.
(b) Distinguish between paramagnetic, diamagnetic and ferromagnetic materials.
18.(a) Starting from Maxwell's Equations, derive electromagnetic wave equations in free space. (10)
(b) If the magnitude of \mathbf{H} in a plane wave is $1 \mathbf{A} / \mathrm{m}$, find the magnitude of \mathbf{E} in free space.

Module 5

19.(a) Show that superconductors are perfect diamagnets. Distinguish between Type I and

Type II superconductors with suitable examples.
(b) Write a short note on high temperature superconductors.
20.(a) Define numerical aperture of an optic fibre and derive an expression for the NA of a step index fibre with a neat diagram. (10)
(b) Calculate the numerical aperture and acceptance angle of a fibre with a core refractive index of 1.54 and a cladding refractive index of 1.50 when the fibre is inside water of refractive index 1.33. (4)
($14 \times 5=70$)

Syllabus
 ENGINEERING PHYSICS A
 (FOR CIRCUIT BRANCHES)

Module 1

Oscillations and Waves

Harmonic oscillations, Damped harmonic motion-Derivation of differential equation and its solution, Over damped, Critically damped and Under damped Cases, Quality factor-Expression, Forced oscillations-Differential Equation-Derivation of expressions for amplitude and phase of forced oscillations, Amplitude Resonance-Expression for Resonant frequency, Quality factor and Sharpness of Resonance, Electrical analogy of mechanical oscillators

Wave motion- Derivation of one dimensional wave equation and its solution, Three dimensional wave equation and its solution (no derivation), Distinction between transverse and longitudinal waves, Transverse vibration in a stretched string, Statement of laws of vibration

Module 2
 Wave Optics

Interference of light-Principle of superposition of waves, Theory of thin films - Cosine law (Reflected system), Derivation of the conditions of constructive and destructive Interference, Interference due to wedge shaped films -Determination of thickness and test for optical planeness, Newton's rings Measurement of wavelength and refractive index, Antireflection coatings

Diffraction of light, Fresnel and Fraunhofer classes of diffraction, Diffraction grating-Grating equation, Rayleigh criterion for limit of resolution, Resolving and Dispersive power of a grating with expression (no derivation)

Module 3

Quantum Mechanics \& Nanotechnology

Introduction for the need of Quantum mechanics, Wave nature of Particles, Uncertainty principle, Applications-Absence of electrons inside a nucleus and Natural line broadening mechanism, Formulation of time dependent and independent Schrodinger wave equations-Physical meaning of wave function, Particle in a one dimensional box- Derivation for normalised wave function and energy eigen values, Quantum Mechanical Tunnelling (Qualitative)

Introduction to nanoscience and technology, Increase in surface to volume ratio for nanomaterials, Quantum confinement in one dimension, two dimension and three dimension-Nano sheets, Nano wires and Quantum dots, Properties of nanomaterials-mechanical, electrical and optical, Applications of nanotechnology (qualitative ideas)

Module 4

Magnetism \& Electro Magnetic Theory

Magnetic field and Magnetic flux density, Gauss's law for Magnetic flux density, Ampere's Circuital law, Faraday's law in terms of EMF produced by changing magnetic flux, Magnetic permeability and susceptibility, Classification of magnetic materials-para, dia and ferromagnetic materials

Fundamentals of vector calculus, concept of divergence, gradient and curl along with physical significance, Line, Surface and Volume integrals, Gauss divergence theorem \& Stokes' theorem, Equation of continuity, Derivation of Maxwell's equations in vacuum, Comparison of displacement current with conduction current. Electromagnetic waves, Velocity of Electromagnetic waves in free space, Flow of energy and Poynting's vector (no derivation)

Module 5

Superconductivity \& Photonics
Superconducting phenomena, Meissner effect and perfect diamagnetism, Types of superconductorsType I and Type II, BCS Theory (Qualitative), High temperature superconductors-Applications of super conductivity

Introduction to photonics-Photonic devices-Light Emitting Diode, Photo detectors -Junction and PIN photodiodes, Solar cells-I-V Characteristics, Optic fibre-Principle of propagation of light, Types of fibres-Step index and Graded index fibres, Numerical aperture -Derivation, Fibre optic communication system (block diagram), Industrial, Medical and Technological applications of optical fibre, Fibre optic sensors-Intensity Modulated and Phase modulated sensors.

Text Books

1. M.N.Avadhanulu, P.G.Kshirsagar,TVS Arun Murthy "A Text book of Engineering Physics", S.Chand \&Co., Revised Edition 2019
2. H.K.Malik, A.K. Singh, "Engineering Physics" McGraw Hill Education, Second Edition 2017

Reference Books

1. Arthur Beiser, "Concepts of Modern Physics ", Tata McGraw Hill Publications, 6th Edition 2003
2. D.K. Bhattacharya, Poonam Tandon, "Engineering Physics", Oxford University Press, 2015
3. Md.N.Khan \& S.Panigrahi "Principles of Engineering Physics 1\&2", Cambridge University Press, 2016
4. Aruldhas G., "Engineering Physics", PHI Pvt. Ltd., 2015
5. Ajoy Ghatak, "Optics", Mc Graw Hill Education, Sixth Edition, 2017
6. T. Pradeep, "Nano:The Essentials", McGraw Hill India Ltd, 2007
7. Halliday, Resnick, Walker, "Fundamentals of Physics", John Wiley \& Sons.Inc, 2001
8. David J Griffiths, "Introduction to Electrodynamics", Addison-Wesley publishing, 3rd Edition, 1999
9. Premlet B., "Advanced Engineering Physics", Phasor Books, $10^{\text {th }}$ edition,2017
10. I. Dominic and. A. Nahari, "A Text Book of Engineering physics", Owl Books Publishers, Revised edition, 2016

Course Contents and Lecture Schedule

No	Topic	No. of Lectures
1	Oscillations and Waves (9 hours)	
1.1	Harmonic oscillations, Damped harmonic motion-Derivation of differential equation and its solution, Over damped, Critically damped and Under damped Cases, Quality factor-Expression	2 hrs
1.2	Forced oscillations-Differential Equation-Derivation of expressions for amplitude and phase of forced oscillations, Amplitude ResonanceExpression for Resonant frequency, Quality factor and Sharpness of Resonance, Electrical analogy of mechanical oscillators	3hrs
1.3	Wave motion- Derivation of one dimensional wave equation and its solution, Three dimensional wave equation and its solution (no derivation)	2 hrs
1.4	Distinction between transverse and longitudinal waves. Transverse vibration in a stretched string, Statement of laws of vibration	2 hrs
2	Wave Optics (9 hours)	
2.1	Interference of light-Principle of superposition of waves, Theory of thin films - Cosine law (Reflected system), Derivation of the conditions of constructive and destructive Interference	2 hrs
2.2	Interference due to wedge shaped films -Determination of thickness and test for optical planeness, Newton's rings - Measurement of wavelength and refractive index, Antireflection coatings	4 hr
2.3	Diffraction of light, Fresnel and Fraunhofer classes of diffraction, Diffraction grating-Grating equation	2 hrs
2.4	Rayleigh criterion for limit of resolution, Resolving and Dispersive power of a grating with expression (no derivation)	1 hr
3	Quantum Mechanics \&Nanotechnology (9hours)	
3.1	Introduction for the need of Quantum mechanics, Wave nature of Particles, Uncertainty principle, Applications-Absence of electrons inside a nucleus and Natural line broadening mechanism	2 hrs
3.2	Formulation of time dependent and independent Schrodinger wave equations-Physical Meaning of wave function, Particle in a one dimensional box- Derivation for normalised wave function and energy eigen values, Quantum Mechanical Tunnelling (Qualitative)	4 hrs
3.3	Introduction to nanoscience and technology, Increase in surface to volume ratio for nanomaterials, Quantum confinement in one dimension, two dimension and three dimension-Nano sheets, Nano wires and Quantum dots	2 hrs
3.4	Properties of nanomaterials-mechanical, electrical and optical Applications of nanotechnology (qualitative ideas)	1 hr
4	Magnetism \& Electro Magnetic Theory (9 hours)	
4.1	Magnetic field and Magnetic flux density, Gauss's law for Magnetic flux	2 hrs

	density, Ampere's Circuital law, Faraday's law in terms of EMF produced by changing magnetic flux		
4.2	Explanation for Magnetic permeability and susceptibility Classification of magnetic materials- para, dia and ferromagnetic materials	1 hr	
4.3	Fundamentals of vector calculus, concept of divergence, gradient and curl along with physical significance, Line, Surface and Volume integrals, Gauss divergence theorem \& Stokes' theorem	2 hrs	
4.4	Equation of continuity, Derivation of Maxwell's equations in vacuum, Comparison of displacement current with conduction current. Electromagnetic waves, Velocity of Electromagnetic waves in free space, Flow of energy and Poynting's vector (no derivation)	4 hrs	
5	Superconductivity \&Photonics (9hours)		
5.1	Super conducting Phenomena, Meissner effect and perfect diamagnetism, Types of superconductors-Type I and Type II	2 hrs	
5.2	BCS Theory (Qualitative), High temperature superconductors, Applications of super conductivity	2 hrs	
5.3	Introduction to photonics-Photonic devices-Light Emitting Diode, Photo detectors -Junction and PIN photodiodes, Solar cells-I-V Characteristics	2 hrs	
5.4	Optic fibre-Principle of propagation of light, Types of fibres-Step index and Graded index fibres, Numerical aperture -Derivation, Fibre optic communication system (block diagram), Industrial, Medical and Technological applications of optical fibre, Fibre optic sensors-Intensity Modulated and Phase modulated sensors	3 hrs	

EST	ENGINEERING	CATEGORY	L	T	P	CREDIT	Year of Introduction
110	GRAPHICS	ESC	2	0	2	3	2019

Preamble: To enable the student to effectively perform technical communication through graphical representation as per global standards.

Prerequisite: NIL
Course Outcomes: After the completion of the course the student will be able to

CO 1	Draw the projection of points and lines located in different quadrants
CO 2	Prepare multiview orthographic projections of objects by visualizing them in different positions
CO 3	Draw sectional views and develop surfaces of a given object
CO 4	Prepare pictorial drawings using the principles of isometric and perspective projections to visualize objects in three dimensions.
CO 5	Convert 3D views to orthographic views
CO 6	Obtain multiview projections and solid models of objects using CAD tools

Mapping of course outcomes with program outcomes

	PO											
$\mathbf{3}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$		
CO 1	3											
CO 2	3											
CO 3	3	1										
CO 4	3									1		
CO 5	3									2		
CO 6	3				3					3		

Assessment Pattern

Bloom's Category		Continuous Assessment Tests	

Mark distribution

Total Marks	CIE (Marks)	ESE (Marks)	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks

CIA for section A carries 25 marks (15 marks for 1 test and Class work 10 marks)
CIA for section B carries 15 marks (10 marks for 1 test and Class work 5 marks)

End Semester Examination Pattern:

ESE will be of 3 hour duration on A4 size answer booklet and will be for 100 marks. The question paper shall contain two questions from each module of Section A only. Student has to answer any one question from each module. Each question carries 20 marks.

Course Level Assessment Questions

(Questions may be framed based on the outline given under each course outcome)

Course Outcome 1 (CO1):

1. Locate points in different quadrants as per given conditions.
2. Problems on lines inclined to both planes .
3. Find True length, Inclinations and Traces of lines.

Course Outcome 2 (CO2)

1. Draw orthographic views of solids and combination solids
2. Draw views of solids inclined to any one reference plane.
3. Draw views of solids inclined to both reference planes.

Course Outcome 3 (CO3):

1. Draw views of solids sectioned by a cutting plane
2. Find location and inclination of cutting plane given true shape of the section
3. Draw development of lateral surface of solids and also its sectioned views

Course Outcome 4 (CO4):

1. Draw Isometric views/projections of soilds
2. Draw Isometric views/projections of combination of soilds
3. Draw Perspective views of Soilds

Course Outcome 5 (CO5):

1. Draw Orthographic views of solids from given three dimensional view

Course Outcome 6 (CO6):

1. Draw the given figure including dimensions using 2D software
2. Create 3D model using modelling software from the given orthographic views or 3D figure or from real 3D objects
Reg No: \qquad
Name : \qquad

PAGES:3

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, MONTH \& YEAR

Course Code: EST 110
ENGINEERING GRAPHICS

Max.Marks:100

Duration: 3 Hours

PART A

Answer all Questions. Each question carries 3 Marks

Instructions: Retain necessary Construction lines

Show necessary dimensions

Answer any ONE question from each module
Each question carries $\mathbf{2 0}$ marks

MODULE I

1. The end point A of a line is 20 mm above HP and 10 mm in front of VP. The other end of the line is 50 mm above HP and 15 mm behind VP. The distance between the end projectors is 70 mm . Draw the projections of the line. Find the true length and true inclinations of the line with the principal planes. Also locate the traces of the line.
2. One end of a line is 20 mm from both the principal planes of projection. The other end of the line is 50 mm above HP and 40 mm in front of VP. The true length of the line is 70 mm . Draw the projections of the line. Find its apparent inclinations, elevation length and plan length. Also locate its traces.

MODULE II
3. A pentagonal pyramid of base side 25 mm and height 40 mm , is resting on the ground on one of its triangular faces. The base edge of that face is inclined 30° to VP. Draw the projections of the solid.
4. A hexagonal prism has side 25 mm and height 50 mm has a corner of its base on the ground and the long edge containing that corner inclined at 30° to HP and 45° to VP. Draw the projections of the solid.

MODULE III

5. A triangular prism of base side 40 mm and height 70 mm is resting with its base on the ground and having an edge of the base perpendicular to VP. Section the solid such that the true shape of the section is a trapezium of parallel sides 30 mm and 10 mm . Draw the projections showing the true shape. Find the inclination of the cutting plane with the ground plane.
6. Draw the development of a pentagonal pyramid of base side 30 mm and height 50 mm . A string is wound from a corner of the base round the pyramid and back to the same point through the shortest distance. Show the position of the string in the elevation and plan.

MODULE IV

7. The frustum of a cone has base diameter 50 mm and top diameter 40 mm has a height of 60 mm . It is paced centrally on top of a rectangular slab of size $80 x 60 \mathrm{~mm}$ and of thickness 20 mm . Draw the isometric view of the combination.
8. A hexagonal prism has base side 35 mm and height 60 mm . A sphere of diameter 40 mm is placed centrally on top of it. Draw the isometric projection of the combination.

MODULE V

9. Draw the perspective view of a pentagonal prism, 20 mm side and 45 mm long lying on one of its rectangular faces on the ground and having its axis perpendicular to picture plane. One of its pentagonal faces touches the picture plane and the station point is 50 mm in front of $\mathrm{PP}, 25 \mathrm{~mm}$ above the ground plane and lies in a central plane, which is 70 mm to the left of the center of the prism.
10. Draw three orthographic views with dimensions of the object shown in figure below.

SCHEME OF VALUATION

1. Locating the points and drawing the projections of the line -4 marks

Finding true length by any one method - 6 marks
Finding true inclination with VP - 2 marks
Finding true inclination with HP - 2 marks
Locating horizontal trace -2 marks
Locating vertical trace - 2 marks
Dimensioning and neatness - 2 marks

$$
\text { Total = } 20 \text { marks }
$$

2. Locating the points and drawing true length of the line - 4 marks

Finding projections by any method -6 marks
Finding length of elevation and plan -2 marks
Finding apparent inclinations - 2 marks
Locating horizontal trace - 2 marks
Locating vertical trace -2 marks
Dimensioning and neatness - 2 marks

$$
\text { Total = } 20 \text { marks }
$$

3. Drawing initial position plan and elevation -4 marks

First inclination views - 4 marks
Second inclination views -8 marks
Marking invisible edges -2 marks
Dimensioning and neatness - 2 marks
Total $=20$ marks
(Any one method or combination of methods for solving can be used. If initial position is wrong then maximum 50% marks may be allotted for the answer)
4. Drawing initial position plan and elevation - 4 marks

First inclination views - 4 marks
Second inclination views -8 marks
Marking invisible edges -2 marks
Dimensioning and neatness - 2 marks
Total = 20 marks
(Any one method or combination of methods for solving can be used
If initial position is wrong then maximum 50% marks may be allotted for the answer)
5. Drawing initial position plan and elevation -4 marks

Locating section plane as per given condition - 5 marks
Drawing true shape -5 marks
Finding inclination of cutting plane -2 marks
Dimensioning and neatness - 2 marks
Total = 20 marks
6. Drawing initial position plan and elevation - 4 marks

Development of the pyramid - 6 marks

Locating string in development -2 marks
Locating string in elevation -3 marks
Locating string in plan - 3 marks
Dimensioning and neatness - 2 marks

$$
\text { Total = } 20 \text { marks }
$$

7. Drawing initial positions - 4 marks

Isometric View of Slab -6 marks
Isometric View of Frustum - 10 marks
Dimensioning and neatness - 2 marks
Total $=20$ marks
(Initial position is optional, hence redistribute if needed.
Reduce 4 marks if Isometric scale is taken)
8. Drawing initial positions -4 marks

Isometric scale - 4 marks
Isometric projection of prism -5 marks
Isometric projection of sphere - 5 marks
Dimensioning and neatness - 2 marks
Total = 20 marks
(Initial position is optional, hence redistribute if needed.
9. Drawing the planes and locating the station point -4 marks

Locating elevation points - 2 marks
Locating plan points -2 marks
Drawing the perspective view - 10 marks
Dimensioning and neatness - 2 marks
Total $=20$ marks
10. Drawing the elevation -8 marks

Drawing the plan - 4 marks
Drawing the side view -4 marks
Marking invisible edges - 2 marks
Dimensioning and neatness - 2 marks

SYLLABUS

General Instructions:

$>$ First angle projection to be followed
$>$ Section A practice problems to be performed on A4 size sheets
$>$ Section B classes to be conducted on CAD lab

Module 1

Introduction : Relevance of technical drawing in engineering field. Types of lines, Dimensioning, BIS code of practice for technical drawing.
Orthographic projection of Points and Lines: Projection of points in different quadrants, Projection of straight lines inclined to one plane and inclined to both planes. Trace of line. Inclination of lines with reference planes True length of line inclined to both the reference planes.

Module 2

Orthographic projection of Solids: Projection of Simple solids such as Triangular, Rectangle, Square, Pentagonal and Hexagonal Prisms, Pyramids, Cone and Cylinder. Projection of solids in simple position including profile view. Projection of solids with axis inclined to one of the reference planes and with axis inclined to both reference planes.

Module 3

Sections of Solids: Sections of Prisms, Pyramids, Cone, Cylinder with axis in vertical position and cut by different section planes. True shape of the sections. Also locating the section plane when the true shape of the section is given.
Development of Surfaces: Development of surfaces of the above solids and solids cut by different section planes. Also finding the shortest distance between two points on the surface.

Module 4

Isometric Projection: Isometric View and Projections of Prisms, Pyramids, Cone, Cylinder, Frustum of Pyramid, Frustum of Cone, Sphere, Hemisphere and their combinations.

Module 5

Perspective Projection: Perspective projection of Prisms and Pyramids with axis perpendicular to the ground plane, axis perpendicular to picture plane.
Conversion of Pictorial Views: Conversion of pictorial views into orthographic views.

SECTION B

(To be conducted in CAD Lab)
Introduction to Computer Aided Drawing: Role of CAD in design and development of new products, Advantages of CAD. Creating two dimensional drawing with dimensions using suitable software. (Minimum 2 exercises mandatory)
Introduction to Solid Modelling: Creating 3D models of various components using suitable modelling software. (Minimum 2 exercises mandatory)

Text Books

1. Bhatt, N.D., Engineering Drawing, Charotar Publishing House Pvt. Ltd.
2. John, K.C. Engineering Graphics, Prentice Hall India Publishers.

Reference Books

1. Anilkumar, K.N., Engineering Graphics, Adhyuth narayan Publishers
2. Agrawal, B. And Agrawal, C.M., Engineering Darwing, Tata McGraw Hill Publishers.
3. Benjamin, J., Engineering Graphics, Pentex Publishers- $3^{\text {rd }}$ Edition, 2017
4. Duff, J.M. and Ross, W.A., Engineering Design and Visualisation, Cengage Learning.
5. Kulkarni, D.M., Rastogi, A.P. and Sarkar, A.K., Engineering Graphics with AutoCAD, PHI.
6. Luzaddff, W.J. and Duff, J.M., Fundamentals of Engineering Drawing, PHI.
7. Varghese, P.I., Engineering Graphics, VI P Publishers
8. Venugopal, K., Engineering Drawing and Graphics, New Age International Publishers.

Course Contents and Lecture Schedule

No	SECTION A	No. of Hours
1	MODULE I	1
1.1	Introduction to graphics, types of lines, Dimensioning	2
1.2	Concept of principle planes of projection, different quadrants, locating points on different quadrants	(
1.3	Projection of lines, inclined to one plane. Lines inclined to both planes, trapezoid method of solving problems on lines.	
1.4	Problems on lines using trapezoid method	2
1.5	Line rotation method of solving, problems on line rotation method	2
2	MODULE II	2
2.1	Introduction of different solids, Simple position plan and elevation of solids	2
2.2	Problems on views of solids inclined to one plane	2
2.3	Problems on views of solids inclined to both planes	2
2.4	Practice problems on solids inclined to both planes	2

3	MODULE III	
3.1	Introduction to section planes. AIP and AVP. Principle of locating cutting points and finding true shape	2
3.2	Problems on sections of different solids	2
3.3	Problems when the true shape is given	2
3.4	Principle of development of solids, sectioned solids	2
4	MODULE IV	
4.1	Principle of Isometric View and Projection, Isometric Scale. Problems on simple solids	2
4.2	Isometric problems on Frustum of solids, Sphere and Hemisphere	2
4.3	Problems on combination of different solids	2
5	MODULE V	
5.1	Introduction to perspective projection, different planes, station point etc. Perspective problems on pyramids	2
5.2	Perspective problems on prisms	2
5.3	Practice on conversion of pictorial views into orthographic views	2
	SECTION B (To be conducted in CAD lab)	
1	Introduction to CAD and software. Familiarising features of 2D software. Practice on making 2D drawings	2
2	Practice session on 2D drafting	2
3	Introduction to solid modelling and software	2
4	Practice session on 3D modelling	2

ESL 130	 ELECTRONICS WORIKSHOP	CATEGORY	L	T	P	CREDIT	YEAR OF INTRODUCTION
		ESC	0	0	2	1	2019

Preamble: Electrical Workshop is intended to impart skills to plan and carry out simple electrical wiring. It is essential for the practicing engineers to identify the basic practices and safety measures in electrical wiring.

Prerequisite: NIL
Course Outcomes: After the completion of the course the student will be able to

CO 1	Demonstrate safety measures against electric shocks.
CO 2	Identify the tools used for electrical wiring, electrical accessories, wires, cables, batteries and standard symbols
CO 3	Develop the connection diagram, identify the suitable accessories and materials necessary for wiring simple lighting circuits for domestic buildings
CO 4	Identify and test various electronic components
CO 5	Draw circuit schematics with EDA tools
CO 6	Assemble and test electronic circuits on boards
CO 7	Work in a team with good interpersonal skills

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	-	-	-	-	-	3	-	-	-	-	-	1
CO 2	2	-	-	-	-	-	-	-	-	1	-	-
CO 3	2	-	-	1	-	1	-	1	2	2	-	2
CO 4	3	-	-	-	-	-	-	-	-	-	-	2
CO 5	3	-	-	-	2	-	-	-	-	-	-	2
CO 6	3	-	-	-	2	-	-	-	-	-	-	1
CO 7	-	-	-	-	-	-	-	-	3	2	-	2

Mark distribution

Total Marks	CIE	ESE	ESE Duration(Internal)
100	100	-	1 hour

Continuous Internal Evaluation Pattern:

Attendance	$: 20$ marks
Class work/ Assessment/Viva-voce	$: 50$ marks
End semester examination (Internally by college)	$: 30$ marks

End Semester Examination Pattern: Written Objective Examination of one hour

Syllabus

PART 1

ELECTRICAL

List of Exercises / Experiments

1. a) Demonstrate the precautionary steps adopted in case of Electrical shocks.
b)Identify different types of cables, wires, switches, fuses, fuse carriers, MCB, ELCB and MCCB with ratings.
2. Wiring of simple light circuit for controlling light/ fan point (PVC conduit wiring)
3. Wiring of light/fan circuit using Two way switches . (Staircase wiring)
4. Wiring of Fluorescent lamps and light sockets (6A) with a power circuit for controlling power device. (16A socket)
5. Wiring of power distribution arrangement using single phase $M C B$ distribution board with ELCB, main switch and Energy meter.
6. a)Identify different types of batteries with their specifications.
b)Demonstrate the Pipe and Plate Earthing Schemes using Charts/Site Visit.

PART II

ELECTRONICS

List of Exercises / Experiments (Minimum of 7 mandatory)

1. Familiarization/Identification of electronic components with specification (Functionality, type, size, colour coding, package, symbol, cost etc. [Active, Passive, Electrical, Electronic, Electro-mechanical, Wires, Cables, Connectors, Fuses, Switches, Relays, Crystals, Displays, Fasteners, Heat sink etc.)
2. Drawing of electronic circuit diagrams using BIS/IEEE symbols and introduction to EDA tools (such as Dia or XCircuit), Interpret data sheets of discrete components and IC's, Estimation and costing.
3. Familiarization/Application of testing instruments and commonly used tools. [Multimeter, Function generator, Power supply, DSO etc.] [Soldering iron, Desoldering pump, Pliers, Cutters, Wire strippers, Screw drivers, Tweezers, Crimping tool, Hot air soldering and de-soldering station etc.]
4. Testing of electronic components [Resistor, Capacitor, Diode, Transistor and JFET using multimeter.]
5. Inter-connection methods and soldering practice. [Bread board, Wrapping, Crimping, Soldering - types - selection of materials and safety precautions, soldering practice in connectors and general purpose PCB, Crimping.]
6. Printed circuit boards (PCB) [Types, Single sided, Double sided, PTH, Processing methods, Design and fabrication of a single sided PCB for a simple circuit with manual etching (Ferric chloride) and drilling.]
7. Assembling of electronic circuits using SMT (Surface Mount Technology) stations.
8. Assembling of electronic circuit/system on general purpose PCB, test and show the functioning (Any Two circuits).
9. Fixed voltage power supply with transformer, rectifier diode, capacitor filter, zener/IC regulator.
10. Square wave generation using IC 555 timer in IC base.
11. Sine wave generation using IC 741 OP-AMP in IC base.
12. RC coupled amplifier with transistor BC107.

EST $\mathbf{1 3 0}$	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	CATEGORY	L	T	P	CREDIT	YEAR OF INTRODUCTION
		ESC	4	0	0	4	2019

Preamble:

This course aims to (1) equip the students with an understanding of the fundamental principles of electrical engineering(2) provide an overview of evolution of electronics, and introduce the working principle and examples of fundamental electronic devices and circuits (3) provide an overview of evolution of communication systems, and introduce the basic concepts in radio communication.

Prerequisite: Physics and Mathematics (Pre-university level)
Course Outcomes: After the completion of the course the student will be able to

CO 1	Apply fundamental concepts and circuit laws to solve simple DC electric circuits
CO 2	Develop and solve models of magnetic circuits
CO 3	Apply the fundamental laws of electrical engineering to solve simple ac circuits in steady state
CO 4	Describe working of a voltage amplifier
CO 5	Outline the principle of an electronic instrumentation system
CO 6	Explain the principle of radio and cellular communication

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	1	-	-	-	-	-	-	-	-	-	2
CO 2	3	1	-	-	-	-	-	-	-	-	-	2
CO 3	3	1	-	-	-	-	-	-	-	-	-	2
CO 4	2	-	-	-	-	-	-	-	-	-	-	-
CO 5	2	-	-	-	-	-	-	-	-	-	-	2
CO 6	2	-	-	-	-	-	-	-	-	-	-	2

Assessment Pattern

Bloom's Category	Basic Electrical Engineering			Basic Electronics Engineering		
	Continuous Assessment Tests		End Semester Examination (Marks)	Continuous Assessment Tests		End Semester Examination (Marks)
	Test 1 (Marks)	Test 2 (Marks)		Test 1 (Marks)	Test 2 (Marks)	
Remember	0	0	10	10	10	20
Understand	12.5	12.5	20	15	15	30
Apply	12.5	12.5	20			
Analyse						
Evaluate						
Create						

Mark distribution

Total Marks	CIE marks	ESE marks	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:	
Attendance	$: 10$ marks
Continuous Assessment Test (2 numbers)	$: 25$ marks
Assignment/Quiz/Course project	$: 15$ marks

End Semester Examination Pattern: There will be two parts; Part I - Basic Electrical Engineering and Part II - Basic Electronics Engineering. Part I and PART II carries 50 marks each. For the end semester examination, part I contain 2 parts - Part A and Part B. Part A contain 5 questions carrying 4 marks each (not exceeding 2 questions from each module). Part B contains 2 questions from each module out of which one to be answered. Each question carries 10 mark and can have maximum 2 subdivisions. The pattern for end semester examination for part II is same as that of part I. However, student should answer both part I and part $\mathbf{2}$ in separate answer booklets.

Course Level Assessment Questions

Course Outcome 1 (CO1):

1. Solve problems based on current division rule.
2. Solve problems with Mesh/node analysis.
3. Solve problems on Wye-Delta Transformation.

Course Outcome 2 (CO2):

1. Problems on series magnetic circuits
2. Problems on parallel magnetic circuits
3. Problems on composite magnetic ciruits
4. Course Outcome 3 (CO3):
5. problems on self inductance, mutual inductance and coefficient of coupling
6. problems on rms and average values of periodic waveforms
7. problems on series ac circuits
8. Compare star and Delta connected 3 phase AC systems.

Course Outcome 4 (CO4): Describe working of a voltage amplifier
1.What is the need of voltage divider biasing in an RC coupled amplifier?
2. Define operating point in the context of a BJT amplifier.
3. Why is it required to have a voltage amplifier in a public address system?

Course Outcome 5 (CO5): Outline the principle of an electronic instrumentation system

1. Draw the block diagram of an electronic instrumentation system.
2. What is a transducer?
3. Explain the working principle of operation of digital multimeter.

Course Outcome 6 (CO6): Explain the principle of radio and cellular communication

1. What is the working principle of an antenna when used in a radio transmitter?
2. What is the need of two separate sections RF section and IF section in a super heterodyne receiver?
3. What is meant by a cell in a cellular communication?

Model Question Paper
QP CODE:
Pages: 3
Reg No.: \qquad

Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, MONTH \& YEAR

Course Code: EST 130

Course Name: BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING
Max. Marks: 100
Duration: 3 hours
Answer both part I and part 2 in separate answer booklets
PART I

BASIC ELECTRICAL ENGINEERING

PART A

Answer all questions; each question carries 4 marks.

1. Calculate the current through the 4Ω resistor in the circuit shown, applying current division rule:

2. Calculate the RMS and average values of a purely sinusoidal current having peak value 15A.
3. An alternating voltage of $(80+\mathrm{j} 60) \mathrm{V}$ is applied to an RX circuit and the current flowing through the circuit is $(-4+\mathrm{j} 10) \mathrm{A}$. Calculate the impedance of the circuit in rectangular and polar forms. Also determine if X is inductive or capacitive.
4. Derive the relation between line and phase values of voltage in a three phase star connected system.
5. Compare electric and magnetic circuits.
($5 \times 4=20$)

PART B

Answer one question from each module; each question carries 10 marks.

Module 1

6. . Calculate the node voltages in the circuit shown, applying node analysis:

7. (a) State and explain Kirchhoff's laws.
(b) Calculate the current through the galvanometer (G) in the circuit shown:

8. (a) State and explain Faraday's laws of electromagnetic induction with examples. (4 marks)
(b) Differentiate between statically and dynamically induced emf. A conductor of length 0.5 m moves in a uniform magnetic field of flux density 1.1 T at a velocity of $30 \mathrm{~m} / \mathrm{s}$. Calculate the emf induced in the conductor if the direction of motion of the conductor is inclined at 60° to the direction of field.
9. (a) Derive the amplitude factor and form factor of a purely sinusoidal waveform. (5 marks)
(b) A current wave is made up of two components-a 5 A dc component and a 50 Hz ac component, which is a sinusoidal wave with a peak value of 5 A . Sketch the resultant waveform and determine its RMS and average values.
(5 marks)

Module 3

10. Draw the power triangle and define active, reactive and apparent powers in ac circuits. Two coils A and B are connected in series across a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The resistance of A is 5Ω and the inductance of B is 0.015 H . If the input from the supply is 3 kW and 2 kVAR , find the inductance of A and the resistance of B. Also calculate the voltage across each coil.
11. A balanced three phase load consists of three coils each having resistance of 4Ω and inductance 0.02 H . It is connected to a $415 \mathrm{~V}, 50 \mathrm{~Hz}$, 3 -phase ac supply. Determine the phase voltage, phase current, power factor and active power when the loads are connected in (i) star (ii) delta.
$(3 \times 10=30)$

PART II

BASIC ELECTRONICS ENGINEERING

PART A

Answer all questions; each question carries 4 marks.

1. Give the specifications of a resistor. The colour bands marked on a resistor are Blue, Grey, Yellow and Gold. What are the minimum and maximum resistance values expected from that resistance?
2. What is meant by avalanche breakdown?
3. Explain the working of a full-wave bridge rectifier.
4. Discuss the role of coupling and bypass capacitors in a single stage RC coupled amplifier.
5. Differentiate AM and FM communication systems.

PART B

Answer one question from each module; each question carries 10 marks.

Module 4

6. a) Explain with diagram the principle of operation of an NPN transistor.
b) Sketch and explain the typical input-output characteristics of a BJT when connected in common emitter configuration.

OR
7. a) Explain the formation of a potential barrier in a P-N junction diode.
b) What do you understand by Avalanche breakdown? Draw and explain the V-I characteristics of a P-N junction and Zener diode.

Module 5

8. a) With a neat circuit diagram, explain the working of an RC coupled amplifier.
b) Draw the frequency response characteristics of an RC coupled amplifier and state the reasons for the reduction of gain at lower and higher frequencies.

OR
9. a) With the help of block diagram, explain how an electronic instrumentation system.
b) Explain the principle of an antenna.

Module 6

10. a) With the help of a block diagram, explain the working of Super hetrodyne receiver.
b) Explain the importance of antenna in a communication system.

OR
11. a) With neat sketches explain a cellular communication system.
b) Explain GSM communication with the help of a block diagram.

SYLLABUS

MODULE 1: Elementary Concepts of Electric Circuits

Elementary concepts of DC electric circuits: Basic Terminology including voltage, current, power, resistance, emf; Resistances in series and parallel; Current and Voltage Division Rules; Capacitors \& Inductors: V-I relations and energy stored. Ohms Law and Kirchhoff's laws-Problems; Star-delta conversion (resistive networks only-derivation not required)-problems.

Analysis of DC electric circuits: Mesh current method - Matrix representation - Solution of network equations. Node voltage methods-matrix representation-solution of network equations by matrix methods. Numerical problems.

MODULE 2: Elementary Concepts of Magnetic circuits, Electromagnetic Induction and AC fundamentals

Magnetic Circuits: Basic Terminology: MMF, field strength, flux density, reluctance - comparison between electric and magnetic circuits- Series and parallel magnetic circuits with composite materials, numerical problems.

Electromagnetic Induction: Faraday's laws, problems, Lenz's law- statically induced and dynamically induced emfs - Self-inductance and mutual inductance, coefficient of coupling

Alternating Current fundamentals: Generation of alternating voltages-Representation of sinusoidal waveforms: frequency, period, Average, RMS values and form factor of waveforms-Numerical Problems.

MODULE 3: AC Circuits

AC Circuits: Phasor representation of sinusoidal quantities. Trignometric, Rectangular, Polar and complex forms. Analysis of simple AC circuits: Purely resistive, inductive \& capacitive circuits; Inductive and capacitive reactance, concept of impedance. Average Power Power factor. Analysis of RL, RC and RLC series circuits-active, reactive and apparent power. Simple numerical problems.

Three phase AC systems: Generation of three phase voltages; advantages of three phase systems, star and delta connections (balanced only), relation between line and phase voltages, line and phase currents- Numerical problems

MODULE 4

Introduction to Semiconductor devices: Evolution of electronics - Vacuum tubes to nano electronics. Resistors, Capacitors and Inductors (constructional features not required): types, specifications. Standard values, color coding. PN Junction diode: Principle of operation, V-I characteristics, principle of avalanche breakdown. Bipolar Junction Transistors: PNP and NPN structures, Principle of operation, relation between current gains in CE, CB and CC, input and output characteristics of common emitter configuration.

MODULE 5

Basic electronic circuits and instrumentation: Rectifiers and power supplies: Block diagram description of a dc power supply, Working of a full wave bridge rectifier, capacitor filter (no analysis), working of simple zener voltage regulator. Amplifiers: Block diagram of Public Address system, Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response, Concept of voltage divider biasing. Electronic Instrumentation: Block diagram of an electronic instrumentation system.

MODULE 6

Introduction to Communication Systems: Evolution of communication systems - Telegraphy to 5G. Radio communication: principle of AM \& FM, frequency bands used for various communication systems, block diagram of super heterodyne receiver, Principle of antenna - radiation from accelerated charge. Mobile communication: basic principles of cellular communications, principle and block diagram of GSM.

Text Books

1. D P Kothari and I J Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
2. D C Kulshreshtha, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
3. ChinmoySaha, Arindham Halder and Debarati Ganguly, Basic Electronics - Principles and Applications, Cambridge University Press, 2018.
4. M.S.Sukhija and T.K.Nagsarkar, Basic Electrical and Electronics Engineering, Oxford University Press, 2012.
5. Wayne Tomasi and Neil Storey, A Textbook On Basic Communication and Information Engineering, Pearson, 2010.

Reference Books

1. Del Toro V, "Electrical Engineering Fundamentals", Pearson Education.
2. T. K. Nagsarkar, M. S. Sukhija, "Basic Electrical Engineering", Oxford Higher Education.
3. Hayt W H, Kemmerly J E, and Durbin S M, "Engineering Circuit Analysis", Tata McGraw-Hill
4. Hughes, "Electrical and Electronic Technology", Pearson Education.
5. V. N. Mittle and Arvind Mittal, "Basic Electrical Engineering," Second Edition, McGraw Hill.
6. Parker and Smith, "Problems in Electrical Engineering", CBS Publishers and Distributors.
7. S. B. Lal Seksena and Kaustuv Dasgupta, "Fundamentals of Electrical Engineering", Cambridge University Press.
8. Anant Agarwal, Jeffrey Lang, Foundations of Analog and Digital Electronic Circuits, Morgan Kaufmann Publishers, 2005.
9. Bernard Grob, Ba sic Electronics, McGraw Hill.
10. A. Bruce Carlson, Paul B. Crilly, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, Tata McGraw Hill, $5^{\text {th }}$ Edition.

COURSE CONTENTS AND LECTURE SCHEDULE

No	Topic	No. of Lectures
1	Elementary Concepts of Electric Circuits	
1.1	Elementary concepts of DC electric circuits: Basic Terminology including voltage, current, power, resistance, emf; Resistances in series and parallel; Current and Voltage Division Rules; Capacitors \& Inductors: V-I relations and energy stored. Ohms Law and Kirchhoff's laws-Problems; Star-delta conversion (resistive networks only-derivation not required)problems.	1 2 1
1.2	Analysis of DC electric circuits: Mesh current method - Matrix representation-Solution of network equations. Node voltage methods-matrix representation-solution of network equations by matrix methods. Numerical problems.	1 1 2
2	Elementary Concepts of Magnetic circuits, Electromagnetic In fundamentals	duction and AC
2.1	Magnetic Circuits: Basic Terminology: MMF, field strength, flux density, reluctance - comparison between electric and magnetic circuits- Series and parallel magnetic circuits with composite materials, numerical problems.	1 2
2.2	Electromagnetic Induction: Faraday's laws, problems, Lenz's lawstatically induced and dynamically induced emfs - Self-inductance and mutual inductance, coefficient of coupling	
2.3	Alternating Current fundamentals: Generation of alternating voltagesRepresentation of sinusoidal waveforms: frequency, period, Average, RMS values and form factor of waveforms-Numerical Problems.	2
3	AC Circuits	

3.1	AC Circuits: Phasor representation of sinusoidal quantities. Trigonometric, Rectangular, Polar and complex forms. Analysis of simple AC circuits: Purely resistive, inductive \& capacitive circuits; Inductive and capacitive reactance, concept of impedance. Average Power, Power factor. Analysis of RL, RC and RLC series circuits-active, reactive and apparent power. Simple numerical problems.	1 2 1 2
3.2	Three phase AC systems: Generation of three phase voltages; advantages of three phase systems, star and delta connections (balanced only), relation between line and phase voltages, line and phase currents- Numerical problems.	2
4	Introduction to Semiconductor devices	
4.1	Evolution of electronics - Vacuum tubes to nano electronics (In evolutional perspective only)	1
4.2	Resistors, Capacitors and Inductors: types, specifications. Standard values, color coding (No constructional features)	2
4.3	PN Junction diode: Principle of operation, V-I characteristics, principle of avalanche breakdown	2
4.4	Bipolar Junction Transistors: PNP and NPN structures, Principle of operation, relation between current gains in CE, CB and CC, input and output characteristics of common emitter configuration	3
5	Basic electronic circuits and instrumentation	
5.1	Rectifiers and power supplies: Block diagram description of a dc power supply, Working of a full wave bridge rectifier, capacitor filter (no analysis), working of simple zener voltage regulator	3
5.2	Amplifiers: Block diagram of Public Address system, Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response, Concept of voltage divider biasing	4
5.3	Electronic Instrumentation: Block diagram of an electronic instrumentation system	2
6	Introduction to Communication Systems	
6.1	Evolution of communication systems - Telegraphy to 5G	1

6.2	Radio communication: principle of AM \& FM, frequency bands used for various communication systems, block diagram of super heterodyne receiver, Principle of antenna - radiation from accelerated charge	4
6.3	Mobile communication: basic principles of cellular communications, principle and block diagram of GSM.	2

Suggested Simulation Assignments for Basic Electronics Engineering

1. Plot V-I characteristics of Si and Ge diodes on a simulator
2. Plot Input and Output characteristics of BJT on a simulator
3. Implementation of half wave and full wave rectifiers
4. Simulation of RC coupled amplifier with the design supplied
5. Generation of AM signal

Note: The simulations can be done on open tools such as QUCS, KiCad, GNURadio or similar software to augment the understanding.

