BRANCH: Applied Electronics and Instrumentation/ Electronics and Instrumentation Engineering

SEMESTER - 7

Course Code	Course Name	L-T-P	Credits	Exam Slot
AE401	Logic and Distributed Control System	4-0-0	4	А
AE403	Biomedical Instrumentation	3-0-0	3	В
AE405	Advanced Control Theory	3-0-0	3	С
AE407	Digital Control System	3-0-0	3	D
AE409	Optical Instrumentation	3-0-0	3	Е
	Elective 3	3-0-0	3	F
AE451	Seminar & Project Preliminary	0-1-4	2	S
AE431	Control System and Signal Processing Lab	0-0-3	1	Т
Total Credits = 22 Hours: 27 Cumulative Credits= 162				

Elective 3:-

1. AE461	ARM System Architecture
2. AE <mark>463</mark>	Aerospace & Navigation Instruments
3. AE4 <mark>65</mark>	Information Security
4. AE467	CMOS Circuit Design
	2014

5. EC370 Digital Image Processing

Course code	Course name	L-T-P-Credits	Ye	ar of				
		4004	Intro	auction				
AE401	LOGIC & DISTRIBUTED CONTROL SYSTEM	4-0-0-4	20	016				
Prerequisite: AE301 Control system								
Course object	tives							
 To giv 	e an introductory knowledge about I	PLC and the progr	amming langu	lages.				
• To giv	e basic knowledge in the architectur	e and local control	unit of distri	buted contr				
ol syst	em.		AAA					
• To giv	e adequate information in the interfa	ces used in DCS.	AIVI					
• To giv	e basic knowledge about Computer	Controlled System	IS. A					
Svllabus			AL					
Programmabl	e Logic Controller - Architecture	of PLC - Desig	n of PLC -	PLC Basic				
Functions - A	pplications Of PLC - Instructions in	n PLC - PLC pros	gramming me	thods as per				
IEC 61131 –	SCADA - Distributed Control Syst	em - Architectu	res - Interfac	es In DCS -				
Process Safet	& Safety Management System - Ri	sk Terminologies	- Instrumente	d System.				
Expected out	come			J				
At the end of	the course, students will be able to :							
i. Ur	derstand the basics of PLC and PLC	Programming						
ii. Kr	low the whereabouts of implementat	ion of SCADA						
iii. Re	produce the working of Distributed	Control System						
iv. Pe	rform the implementation of DCS							
v. Re	cognise the safety procedures to be 1	naintained in an ii	ndustry					
Text Books								
1. John.	W. Webb Ronald A Reis - Progr <mark>am</mark> n	nable Logic Contro	ollers - Princi	ples and				
Applic	cations, Fourth edition, Prentice Hall	Inc., New Jersey,	1998.					
2. Micha	el P. Lukas, 'Distributed Control Sys	stems', Van Nostr	and Reinhold					
Co.,Ca	unada,1986							
3. Petruz	ella, 'Industrial Electronics', McGra	w Hill, Second ed	ition, 1997.					
Reference Bo	oks							
1. Krishr	a Kant – Computer based Industrial	Control, Prentice	Hall, New De	elhi, 1997.				
2. Thoma	as A. Hughes, 'Programmable Logic	Controllers', ISA	press,2007.					
	Course P	lan		·				
Module	Contents	H	ours Seme	ester Exam Marks				
T	Programmable Logic Controller : 1	Evolution of 9	15%					
-	PLC's, Components of PLC, Adva	intages over	10,0					
	relay logic, Architecture of PLC, P	rogramming						
	devices, Discrete and Analog I/	O modules,						
	Programming languages, Ladd	er diagram,						
	Programming timers and counters	, Design of						
	PLC, Definition of PLC, , overvi	ew of PLC						
	systems, input/output modules, pov	ver supplies,						
	isolators. General PLC p	rogramming						
	procedures, programming on-o	off inputs/						
	outputs. Auxiliary commands and	d functions:						
	PLC Basic Functions: Register b	asics, timer						
	functions, counter functions.							
II	Applications Of PLC : Instruction	ons in PLC 9	15%					

	Program control instructions math		
	instructions sequencer instructions. Use of		
	PCas DI C Application of DI C Case study of		
	hottle filling system DLC programming		
	wethed as non EC (1121 Developing		
	methods as per IEC 01151, Developing		
	programs using Sequential Function Chart,		
	Functional Block Diagram, Analog control		
	using PLC (PID controller configuration),	-	
	Interfacing PLC to SCADA/DCS using	AL	N A
	communication link (RS232, RS485),	LA	1 V 1
	Protocols (Modbus ASCII/RTU) and OPC,	ICI	1
	Development stages involved for PLC based	A A	A
	automation systems.	1.	h. And
FIRST INT	ERNAL EXAMINATION	Y	
III	Computer Controlled Systems:	7	15%
	Basic building blocks of Computer controlled		
	systems, SCADA, Data Acquisition System,		
	Supervisory Control.		
	Direct digital Control.		
IV	Distributed Control System DCS -	10	15%
1	Architectures Comparison Local control	10	1570
	unit Process interfacing issues		
	Communication facilities Distributed Control		
	System Basics: DCS introduction Various		
	function Plocks DCS components/block		
	diagram DCS Architecture of different malace		
	diagram, DCS Arcmeeture of different makes,		
	comparison of these architectures with		
	automation pyramid, DCS specification, latest		
	trend and developments, DCS support to		
	Enterprise Resources Planning (ERP),		
	performance criteria for DCS and other		
	automation tools.		
	SECOND INTERNAL EXAMINAT	TION	
V	Interfaces In Dcs : Operator interfaces, Low	9	20%
	level and high level operator interfaces,		
	Operator displays, Engineering interfaces, Low		
	level and high level engineering interfaces,		
	General purpose computers in DCS, DCS detail	1	
	Engineering, configuration and programming,		
	functions including database management,		
	reporting, alarm management, diagnosis.		
VI	Process Safety & Safety Management System :	10	20%
	Process safety and Safety Management		
	Systems: Introduction to process safety. risk.		
	risk terminologies, consequence and risk, risk		
	measurement. Process Hazard Analysis (PHA)		
	Hazard and operability study (HaZOn) Safety		
	Integrity Level (SII) Introduction to		
	IFC61511 standard for Functional safety		
	protection laware Safety Instrumented System		
	protection rayers, safety monumented system.		

	function,	architecture,	safety	life	cycle,		
	Applicatio	n of safety syst	em.				
END SEMESTER EXAMINATION							

Maximum Marks:100	Exam Duration: 3 Hours
Part A APIABDUL	KALAM
Answer any two out of three questions uniformly covering	g Modules 1 and 2 together. Each
question carries 15 marks and may have not more than fo	ur sub divisions.
UNIVERS	(15 x 2 = 30 marks)

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

(20 x 2 = 40 marks)

2014

Estd

Course	Course name	L-T-P-	Yea	ar of
	DIOMEDICAL INSTRUMENTATION			iuction
AL403	biomedical instrumentation	3-0-0-3	20)10
Course of	bioctivos			
• To	jimpart knowledge of the principle of operation	on and de	sign of	biomedical
in	struments.		51811 01	
• To	render a broad and modern account of biomedical in	nstruments.		
• To	introduce idea about human physiology system	ATA	NA	
Svllabus	ALLADUULN	1LA	IVI	
Electro pl	sysiology-Bioelectric potential and cardiovascular m	neasuremen	ts- Respir	ator and
pulmonar	y measurements and rehabilitation- Patient monitoring	ng systems-	Clinical	Laboratory
Instrumen	ts- Imaging technique & Telemetry.		h. And	5
Expected	outcome	I Y		
At the end	l of the semester students will	1. A.		
i. be	able to understand about human physiology			
ii. ha	ve knowledge of the principle operation and design a	and the bac	kground l	nowledge
of	biomedical instruments and specific applications of	biomedical	engineer	ing
Text Boo	ks			
1. A1	<mark>rum</mark> ugam.M. " <i>Biomedical Instrumentation</i> ", Anuradl	ha Agencies	s Publis <mark>he</mark>	ers,
Kı	umbakonam, 2006.			
2. Le	slie Cromwell, Fred J. Weibell and Erich A. Pfeiffer,	, "Biomedic	cal Instr <mark>u</mark>	nentation
an	d Measurements", 2nd Edition, Prentice Hall, New I	Delhi, 1998	•	
Referenc	e Books:			
1. Ge	eddes L. A. and Baker L. E., <i>"Principles of Applied I</i>	Biomedical	Instrume	ntation",
3r	d Edition, John Wiley, New York, 1989.			
2. Jo	hn. G. Webster, "Medical Instrumentation, Applicati	ion and Des	<i>sign"</i> John	n Wiley,
No	ew York, 1998			
3. R.	S.Khandpur, "Handbook of Biomedical Instrument	tation", Pro	entice Ha	ll of India,
No	ew Delhi, 2003		1.14	
4. Ki	chard Aston, "Principles of Bio-medical Instrum	mentation	and Med	isurement",
IVI	Course Plan			
	Course Plan			C
Madula	Contonto		Hanna	Semester
Module	Contents		nours	Exam Morks
Т	Electro physiology: Peyiew of physiology and	anatomy	7	15%
1	resting potential action potential bioelectric	notentials	/	1370
	cardiovascular dynamics electrode theory bipola	r and uni-		
	polar electrodes surface electrodes phy	vsiological		
	transducers Systems approach to biological systems	s		
	dansadeers, systems approach is brotogreat system.	5.		
II	Bioelectric potential and cardiovascular measureme	ents: EMG	6	15%
	- Evoked potential response, EEG, foetal mon	itor. ECG		
	phonocardiography, vector cardiograph, BP, bl	lood flow		
	cardiac output, plethysmography, impedance c	ardiology,		
	cardiac arrhythmia's, pace makers, defibrillators.			
	FIRST INTERNAL EXAMINAT	TION		
III	Respirator and pulmonary measurements and reha	abilitation:	7	15%

	Physiology of respiratory system, respiratory rate measurement, artificial respirator, oximeter, hearing aids, functional neuromuscular simulation, physiotherapy, diathermy nerve stimulator, artificial kidney machine		
IV	Patient monitoring systems: Intensive cardiac care, bedside and central monitoring systems, patient monitoring through bio-telemetry, implanted transmitters, telemetering multiple information. Sources of electrical hazards and safety techniques.	7	15%
	SECOND INTERNAL EXAMINATION	IVI	
V	Clinical Flame photometer - spectrophotometer - Colorimeter- chromatography- Automated Biochemical analysis system - Blood Gas Analyzer: Blood pH Measurement- Measurement of Blood pCO2- Blood pO2 Measurement- Blood Cell Counters: Types and Methods of	7	20%
	cell Counting.		
VI	Recent trends: Medical imaging, X-rays, laser applications, ultrasound scanner, echo cardiography, CT Scan MRI/NMR, cine angiogram, colour doppler systems, Holter monitoring, endoscopy.	8	20%
	END SEMESTER EXAMINATION		

Maximum Marks:100

Part A

Answer any two out of three questions uniformly covering Module 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

Estd.

Part B

Answer any two out of three questions uniformly covering Module 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

2014

(15 x 2 = 30 marks)

(15 x 2 = 30 marks)

Exam Duration: 3 Hours

Part C

Answer any two out of three questions uniformly covering Module 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

Course	Course name	L-T-P- Credits	Year of Introduction
AE405	ADVANCED CONTROL THEORY	3-0-0-3	2016
Prerequis	ite: AE301 Control system		
Course of	ojectives		
• To	study the basic theory required for solving complex control	ol problem	5.
• To	do analysis and modelling of systems and signals.		
Syllabus	ADE ADDILLI MACAL	A N.	(11.1
Concept o	I state space - Linear time varying system - Non-linear sys	tem - Desc ervability	Tibing 7 Transform
- Discrete	root locus	ervaulity.	
Expected	outcome	AI	
• At	the end of the semester students will have comprehensive	knowledge	e in advanced
COI	ntrol theory.		
Text Bool	xs/Reference books		
1. C.	D. Johnson, Process Control Instrumentation Technology,	7th ed., Pr	entice Hall of
2 K	lia, New Delni, 2003		
2. K. 3. K.	Ogata "Modern Control Engineering", 1996, PHI		
4. M.	Gopal, "Modern Control System Theory", New Age Intern	ational Pul	olishers, 2 nd
edi	tion,1996		
5. Ma	adangopal "Digital control and state variables methods" 1	997, PHI.	
6. R.	C. Dorf and R. H. Bishop, <i>Modern Control Systems</i> , 8th ed	l., Pearson	Education,
De	Ihi, 2004		
	Course I lan		Semester
Module	Contents	Hou	rs Exam
			Marks
	Concept of state space-state space representation of syste	m, 6	15%
I	solution of time invariant state equation- state transiti	on	11. s
	matrix. Linear time varying system. Discrete system sta	ate	
	Non-linear system types of non-linearity singular poi	nt 6	15%
Π	non-linear system, types of non-intearity, singular por	ie.	1370
	construction of phase trajectories, isocline method.	,	
		1	
	FIRST INTERNAL EXAMINATION	r	
	Describing function analysis : Basic concepts, derivation	of 7	15%
111	describing functions for common non-linearities		
	Describing function analysis of non-linear systems	_	
	Conditions for stability – Stability of oscillations.		
	Lyapunov stability analysis- definition of stabili	ty, 7	15%
IV	la canado a construito de canada	. 1	
- '	instability and asymptotic stability. Lyapunov stabil	ity	
- '	theorems. Stability analysis of simple linear systems.	ity	

SECOND INTERNAL EXAMINATION

	function- block diagram- signal flow graph- discrete root locus.	M	2070
VI	Z- Transform and digital control system- Z-transfer	8	20%
V	MIMO systems-controllability- Observability- Effect of pole-zero cancellation, Practical examples-controllable and uncontrollable systems-observable and unobservable systems. Optimal control system-definition- design using state variable feedback and error squared performance indices.	8	20%

Maximum Marks:100

Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

Estd

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

14

Course	Course name	L-T	-P-	Year of
code			dits	Introduction
AE407	gita: AE201 Control system	3-0-	0-3	2016
Course	biostives			
	o study the stability englysis of digital control systems			
	a squip the basic knowledge of digital process cont	trol docion		
	s equip the basic knowledge of digital process cont	lioi design		
Discrete	Data Control Systems - Signal conversion & prod	cessing - 7	-transfo	rm- inverse 7-
transform	- Digital control systems - Signal conversion & pro-	- Stability 1	ests Fre	uency domain
analysis	of discrete systems - State space representation - Co	ontrollabili	ty and O	bservability -
Expected	l outcome			
• A	t the end of the semester Students will have knowld	edge of dig	ital proc	ess control
de	esign.	0	· 1	
Text Boo	ks	- A - A -		_
1. B	. C. Kuo, "Digital control systems" (Second Editic	on), Oxfor	d Unive	rsity Press,
20	007			
2. K	. Ogatta, "Discrete Time control systems", 2nd ed.	. (PHI),199	95	
3. M	I. Gopal, "Digital Control systems and state variab	le methods	", Tata N	Ac Graw Hill.
Reference	e e			
1. Jo	ohn Dorsey, "Continuous & Discrete Control Syste	ems ", (MG	·H).	
2. N	agrath & Gopal , "Control System Engineering" (Wiley Easte	ern).	
	Course Plan			
M. J.J.	Contents		TT	Semester
Module	Contents		Hours	Exam
T	Introduction: Basic Elements of discrete data	a control	6	15%
L	systems advantages of discrete data control	systems	0	1370
	examples.	systems,		1 <u>.</u>
	Signal conversion & processing: Digital signals &	& coding.		
	data conversion & quantization, sample and hold	l devices,		
	Mathematical modeling of the sampling proce	ess; Data		
	reconstruction and filtering of sampled signals: Z	ero order		
	hold, first order Hold and polygonal hold.			
II	Review of Z transform. z transform and in	nverse z	6	15%
	transform . Relationship between s- plane and z- p	plane-		
	Difference equation . Solution by recursion	and z-		
	transform.			
		TION		
	FIRST INTERNAL EXAMINA	ATION		2004
111	Digital control systems- Pulse transfer func	tion . Z	8	20%
	Modified z transfor function Stability of line	systems-		
	control systems	ai uigitai		
	control systems			
IV	Stability tests. Steady state error analysis. Poot lo	oci -	8	20%
1.4	Frequency domain analysis- Rode plots- Gain ma	roin and	0	2070
L	1 requency domain analysis- bode plots- Oalli Illa	ingin anu		I

	phase margin		
	SECOND INTERNAL EXAMINATION		
V	Review of state space techniques to continuous data systems, state space representation of discrete time systems- Transfer function from state space model-various canonical forms- conversion of transfer function model to state space model-characteristics equation- solution to	7	15%
	discrete state equations.	AN	
VI	Controllability and Observability - Response between sampling instants using state variable approach-Pole placement using state feedback . Dynamic output feedback- Effects of finite wordlength on controllability and closed loop pole placement-		15%
	END SEMESTER EXAMINATION	1	

Maximum Marks:100

Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

Course	Course name	L-T-P-	Year of				
code		Credits	Introduction				
AE409	OPTICAL INSTRUMENTATION	3-0-0-3	2016				
Prerequi	site : Nil						
Course o	bjectives						
• To	o understand the basic concepts of fiber optics.						
• To	o study optical communication and optical instruments.						
• To	provide basic knowledge in Laser and its application.						
Syllabus	ADI ARIJIII KA	$ \land \land \rangle$	A				
Principle	of Optical fiber - Numerical aperture - Types of optical	al fibers - (Optical sources-				
Optical d	etectors - Fibre optic sensors - Different types of mod	ulators – Ir	nterferometers -				
Interferer	ce filters - Optical spectrum analyzer - Lasers	- Population	on inversion -				
Semicono	luctor lasers - Laser Doppler Anemometry - Medical app.	lication of la	asers.				
Expected	loutcome	0 1	C1 1				
• A	t the end of the semester the students will have knowledg	e of optical	fiber and				
op D (D)	otical instrumentation techniques.						
Text Boo	Ks/Reference books	1005					
	. Keiser, Optical Fibre Communication, McGraw Hill,	1995. tion" Drom	tion Hall of				
2. J. In	dia	tion, rien	lice Hall Of				
3 Ic	uia. hn F. Ready "Industrial Applications of Lasers" Academ	nic Press 10	78				
3. JC	hn M. Senior "Ontical Fiber Communications-Principles	and Practic	e" Pearson				
E	ducation Limited	, and I fuelly	, i cuison				
5. K	Thygaraian and A.K.Ghatak, "Lasers: Theory and Appli	cations ". P	lenum Press.				
6. 0	Svelto, "Principles of Lasers", Plenum Press.	,,					
	Course Plan						
Module	Contents	Hours	Semester				
			Exam				
			Marks				
Ι	Principle of Optical fiber – Acceptance angle and	6	15%				
	acceptance cone –Numerical aperture – V-number –						
	Types of optical fibers (Material, Refractive index and						
	mode) – properties- Optical sources-Optical detectors.	1					
	Optical fiber production and fabrication.	0	1.50/				
11	Fibre optic sensors – Fibre optic instrumentation	8	15%				
	system for measurement of fibre characteristics –						
	Different types of modulators – interferometric						
	Measurement of pressure temperature current						
	voltage liquid level and strain – fiber optic gyroscope						
	Source coupling. Fiber connection-Splicing						
	Techniques						
	FIRST INTERNAL EXAMINATION	J					
Ш	Interferometers – Fabry – perot and Michelson	7	15%				
	interferometers – Interference filters –						
	Interferometeric method of measurement –						
	Interference filters - Interferometeric method of						
	measurement of optical components - Optical						
	spectrum analyzer.						

IV	Lasers – Principles of operation – Einstein relations – Population inversion – Optical feedback – laser modes – Classes of laser – Solid state, gas and liquid dye lasers– Semiconductor lasers – Q-switching and mode locking – Properties of laser light.	6	15%
	SECOND INTERNAL EXAMINATIO	DN	
V	Laser applications: Laser for measurement of distance, length, atmospheric effect and pollutants-Laser Doppler Anemometry (LDA) - Material processing: Laser heating, Melting, Scribing, Trimming, Welding.	8 LAN	20%
VI	Medical application of lasers- Laser and Tissue interaction-Laser diagnosis-Laser instruments for microsurgery, Removal of tumors of vocal chords, Brain surgery, dermatology, Oncology and Ophthalmology.		15%
	END SEMESTER EXAMINATION		

Maximum Marks:100

Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

Estd.

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

(20 x 2 = 40 marks)

2014

Course	Course name	L-T-P-	Year of				
code	CONTROL CUCTER AND CLOULE DROCECODIC	Credits	Introduction				
AE431	I CONTROL SYSTEM AND SIGNAL PROCESSING 0-0-3-1 2010						
Prereaui	LAD site : AE301 & AE306						
Course o	biective						
• Te	o give hands on experience in various digital Signal Processi	ng techniqu	es using TMS				
32	20C6X family processors and in control system analysis using	MATLAB.					
List of E	xperiments						
CONTR	OL SYSTEM LAB using MATLAB	UV1					
1.	Familiarization of MATLAB commands used in control syst	em design					
2.	Representation of system in MATLAB: state space represent	tation & tra	nsfer function				
	representation	h. her					
3.	Stability analysis using Bode plot, root locus & their pole-ze	ero-gain rep	resentation.				
4.	Implementation of Ziegler- Nicholas/ Cohen-coon tuning me	ethod for 1s	st order system.				
5.	Analysis of a closed loop system.		,				
6.	Implementation of PID control using both m-file and Simuli	nk.					
7.	Pole placement technique applied to stabilize a system.						
8.	Realization of a compensator design.						
9.	Modelling and analysis of a first order system.						
10). Modelling of an unstable system (inverted pendulum, ball &	z plate sy <mark>ste</mark>	m etc.)				
PC Bas	sed Control						
1.	PLC programming: familiarization of instruction set.						
2.	PLC programming: simulation of process control.						
3.	SCADA interface.						
4.	Familiarization of Distributed Control System (DCS) with d	ifferent pro	cess stations				
	pressure, flow and level.						
LabVIE	W based Virtual Instrumentation						
1.	Getting started with LabVIEW: Basic operations, controls, in	ndicators, a	nd simple				
	Programming structures.						
2.	Debugging a VI and sub-VI.						
3.	Familiarization of DAQ card.						
SIGNAL	PROCESSING LAB						
1.	Familiarization of signal processing commands used in MAT	<mark>ΓLA</mark> Β Softν	ware.				
2.	Developing elementary signal function modules (m-files) fo	r unit impu	lse, step,				
	exponent and ramp sequence.						
3.	Generating continuous and discrete time sequences.						
4.	Carrying out mathematical operations on signals.						
5.	Response of LTI system described by difference and differen	ntial equation	on.				
6.	Developing a program for computing inverse Z-Transform.						
7.	Developing program for finding magnitude & phase response	se of LTI Sy	vstem				
8.	Developing program for computing DFT & IDFT.						
9.	Developing a program for computing circular convolution.						
10). Design of filter: FIR, IIR, ECG Signal filter (can be done as	3 separate	experiments).				
Expected	loutcome						
• A	t the end of the semester students are expected to be familiar w	with the base	ic signal				
pı	ocessing & control system techniques.						

Course	Course name	L-T-P-	Year of
code		Credits	Introduction
AE461	ARM SYSTEM ARCHITECTURE	3-0-0-3	2016
Prerequi	site : Nil		
Course o	bjectives	7 1 11	1
	o introduce the concepts of embedded processors and ARN	A based dev	velopment.
Syllabus	d Computers Embedded System Design ADM Arch	itaatura I	natruation Sat
ARM Pr	a Computers - Embedded System Design - ARM Arch	$a_{cing} = A^{T}$	RM interfacing
nrograms	- Perinherals In ARM Processors - Perinherals and thei	r control -	ARM tools and
Periphera	ls - Arm Procedure Call Standard - Example C program.	Control	
Expected	l outcome	A	
• A	t the end of the semester students must be able to obtain c	omprehens	ive knowledge
in	embedded processors and ARM based system.	Y.	C
Text Boo	ks CINIY LINOIT	1	
1. St	reve Furber, "ARM system on Chip Architecture", 2nd Edi	tion, Addis	on Wesley
P	ublishers, 2013		
2. W	Yayne Wolf, "Computers as Components Principles of En	ibedded Co	omputing
Sj	<i>pstem Design</i> ", Morgan Kaufman Publishers, 2001		
D 6	D		
	e Books:	itian Addi	aan Waalay
	avia Seal, ARM Architecture Reference Manual, 211d Ed	inion, Audi	soli wesley
2 F1	ank Vahid and Tony D Givargis "Embedded System Des	ion - A Uni	fied
H	ardware/Software Introduction", John Wiley Sons, 2000.	gn 110nij	ica
	Course Plan		
			Semester
Module	Contents	Ho	urs Exam
			Marks
Ι	Embedded Computers – Characteristics of Embe	edded 6	15%
	Computing Applications-Challenges in Embo	edded	
	Computing. Embedded System Design –Pr	ocess	
TT	A DM Anality stores. The ADM Instruction Set Anality		150/
11	ARM Architecture: The ARM Instruction Set Archite	cture. 6	15%
	Bus structure and the peripherals. Register set, Exce	eption	
	modes, sonware interrupt.		
	FIRST INTERNAL EXAMINATION		
Ш	ARM Processor – Memory organization and proc	cessor 8	15%
	initialization [start up code]. Load store instruction	n set.	1070
	Assembly programming using Assemblers, Linkers, Lo	aders	
	and Debuggers.		
	Component Interfacing – Designing with Microprocessor		
	Development and Debugging – Design Example Alarm	Clock	
IV	ARM interfacing programs: GPIO, Timers, Counters, F	WM, 8	15%
	ADC. Application coding examples: Measurement	and	
	control of time, frequency velocity acceleration, p	ower	

SECOND INTERNAL EXAMINATION		
VPeripheralsInARMProcessors:ARM/THUMBarchitecture.Program structure toSupervisor,Kernel,andUser modes.Peripherals and their control:GPIO,Timers,Counters,PWM,ADC and serial communication channels.ADCADCADCADC	7	20%
VI ARM tools and Peripherals: ARM Development Environment, Arm Procedure Call Standard (APCS), Example C program.	7	20%

Maximum Marks:100

Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

014

Estd.

Course	Course name	L-T-P-	Year of
code		Credits	Introduction
AE463	AEROSPACE & NAVIGATION INSTRUMENTS	3-0-0-3	2016
Prerequi	site : Nil		
Course (Dbjective		
• To	o introduce the basics of aerospace engineering		
• To	impart ideas on aircraft and navigation instruments		
Syllabus	, APLABDUU KAL	AN	
History of	of aviation and space flight basics of aerodynamics -	Airplane	performance-
Introduct	on to turbojet and turbofan engines- Basic engine instrum	ients- Airo	craft compass-
Air speed	1 indicator- GPS and GNSS- Introduction to guidance, r	avigation	and avionics-
Introduct	ion to navigation and guidance instrumentation- M	EMS gy	roscopes and
acceleron	neters.		
Expected	outcome		
At the end	1 of semester, the students will		
1. De	a familiar with the basics of aerospace engg and navigation		
11. 112	ive an idea about the instrumentation used in aerospace engi	neering	
Text Boo	ks		
1. N	agaraia.M.S. Elements of electronic navigation. Tata McGra	w Hill	
2. Pa	Illet.E.H.J. Aircraft instruments- Principles and applications	. Pitman F	ub
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	
Referenc	e books		
1. Ei	nest O Doebelin, Dhanesh N Manik , Measurement System	s-Applicat	ion and
D	esign,5 th Edition, Tata McGraw Hill, 2007		
2. Je	wel B Barlow, William H. Rae, Jr., Alan Pope, Low-Speed	l Wind Tu	nnel Testing, ,
Jo	hn Wiley, Third Edition, 1999		-
3. M	arcel J. Sidi, Spacecraft Dynamics and Control-A Practical	Engineerir	ng Approach, ,
C	ambridge University Press, 1997.		1
	Course Plan		
	Lotto.		Semester
Module	Contents	Hour	s Exam
T			Marks
1	History of aviation and space flight- anatomy of airplai		15%
	and space vehicle with emphasis on control surfaces- airfo	011	
	nomenciature- basics of aerodynamics to illustrate lift ar	ia	
тт	drag- types of drag – timte wings – swept wings – haps.	4.0.0	150/
11	Airplane performance- unrust -power- rate of chind absolu	te o	13%
	and service centrig- range and endurance. Introduction		
turbojet and turbotan engines. Space vehicle trajectories-			
	(Introductory treatment of the above tonics is only expected	g. d	
	(information y frequencies is only expected above topics is only expected and derivations)	u,	
	no uctaneu ucrivations)		
	FIRST INTEDNAL EVAMINATION		
III	Basic engine instruments. Canacitive fuel content. Cauge	s 6	15%
111	Standard atmosphere- Altimeters Aneroid and rad	io	1.5 /0

	altimeters.		
IV	Aircraft compass- Remote indicating magnetic compass- Rate of climb indicator- Pitot static system- Air speed indicator- Mach meters- Integrated flight instruments	6	15%
	SECOND INTERNAL EXAMINATION		
V	GPS and GNSS, - Automatic Pilots- Aircraft flight	8	20%
	simulation instrumentation		
	Introduction to guidance, navigation and avionics- Radio navigational aids- automatic direction finder VHF- Phase- Comparison direction finder.	M	
VI	Introduction to navigation and guidance instrumentation- Principle, construction and applications of inertial sensors- Gyroscope and accelerometers- Ring laser gyroscope- Fibre optic gyroscope, MEMS gyroscopes and accelerometers.	8	20%
	END SEMESTER EXAMINATION		

Maximum Marks:100

Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part C

2014

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

Course	Course name	L-T-P-Credits	Year of Introduction		
ΔE465	INFORMATION SECURITY	3-0-0-3	2016		
Prerequisi	ite : Nil	5-0-0-5	2010		
Course Ob	Diective				
• To	understand the threat models and the basic type	s of authenticatio	n mechanisms		
• To	analyse cryptographic techniques, protocols, for	rmats, and standa	rds.		
• To	analyse different log files and understand Cyber	r laws to recover	and secure the		
data	a. A DI A RIDI II k				
Syllabus	ALIADUULT	MLA	VI		
Introductio	on to security and services-Cryptography- Security	ing the systems-N	Network security		
topics-Netw	work perimeter security-Computer forensics and	l Cyber laws			
Expected of	outcome	ITV			
At the end	of the semester students will be able	I I Y			
i.	to apply cryptographic algorithms to avoid data	accessing by un	authorized users		
11.	to implement security algorithms as per the new	ed of organization	1.		
Text Book	S		Les 8 Same 1006		
I. Bru	ice Schneier, "Applied Cryptography", Second	Edition, John Wi	ley & Sons, 1996		
	arrie Kaufman, Kaufa Perfinan, and Mike Specifi mmunication in a Public World" 2nd Edition P	Prontico Holl 200	ority: Private		
3 Ric	k Lehtinen G T Gangemi SR "Computer Sec	nurity Rasics" Se	2. cond Edition		
O'R	Reilly Pubs June 2006	unity Dusies , Se	cond Lantion,		
Reference	Books:				
1. Ma	rije, "Computer Forensics and Cyber Crime": A	An Introduction, 1	Prentice Hall,		
200)4.	,			
2. Ste	phen Northcutt, Karen Kent, and Le <mark>n</mark> ny Zeltser,	, "Inside Network	Perimeter		
Sec	urity", Sams Publications, 200				
3. Wi	lliam Stallings, "Cryptography and Network Sec	<i>curity"</i> , Fourth E	dition, Prentice		
Hal	1, 2005				
	Course Plan				
		-	Semester		
Module	Contents	Hou	rs Exam		
			Marks		
Ι	Introduction to security and services, vulnerabi	ilities and 6	15%		
	countermeasures, malicious code, goals of	security-			
	prevention, detection, and recovery.				
II	Cryptography-Types of encryption, confi	dentiality 6	15%		
	using symmetric encryption, PKI,				
RSA, Key management, Diffie- Hellman, ECC, CA,		CC, CA,			
	etc., authentication protocols.				
-	FIRST INTERNAL EXAMIN	ATION	1.504		
111	Securing the systems-Network security protoc	cois: SSL, [7	15%		
	IPSEC, Kerberoes, X.509	a a a a mit-			
	S/MME. Application security- SSI PGP SFT	security			

IV	Network security topics: Network layer security – IPSec – overview, IP and IPv6, IPSec Protocols: AH and ESP,	7	15%
	runner Wode and transport mode. Internet Key		
	exchange Protocol- IPSec cookies.		
	SECOND INTERNAL EXAMINATION		
V	Network perimeter security-Secured router	8	20%
	configuration, firewall, design principles,	AN	6
	trusted systems, VPN, IDS, IPS penetration testing,	AIV	1
	NAT.	AT	
VI	Computer forensics and Cyber laws- data recovery,	8 —	20%
	security policies and procedures,	71 3.8	
	Security lifestyle management, security audit, managed		
	security services.		
	END SEMESTER EXAMINATION		

Maximum Marks:100

Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

(20 x 2 = 40 marks)

2014

Course	Course name L-T-P- Year of					
code		Credits	Intr	oduction		
AE467	CMOS CIRCUIT DESIGN	ESIGN 3-0-0-3 2016				
Prerequis	ite: EC204 Analog integrated circuits					
Course of	ojectives					
• To	give ideas about basic amplifiers, current Mirrors	and Different	ial Ampl	ifiers		
• To	impart idea of static and switching characteristics	of the CMOS	Inverter			
• To	study the operation of pass transistor logic and tra	nsmission gat	es			
• To	analyse Operational Amplifiers on its design and s	stability factor	rs			
• To	familiarise different types of Memory and its deco	der Circuits	IVI			
Syllabus	TECLINIAIA	101	A. I.			
Review of	Single stage MOS Amplifiers - current Mirrors -	Differential A	Amplifie	rs - CMOS		
Inverter -	Sequential Logic Circuits- Different CMOS	Flip flop -	MOS (Operational		
Amplifier	s- Stability and frequency compensation in Op an	nps - Design	of a tw	o stage Op		
amp - CM	IOS Circuit and Logic Design - Arithmetic Circuit	its in CMOS	VLSI - I	Low power		
design - D	Designing Memory and Array Structures- Designir	ng Combinati	onal Log	ic Gates in		
CMOS.						
Expected	outcome					
• At	the end of the semester students will be able to ob	tain comprehe	ensive kn	owledge		
in	CMOS Circuit Design.					
Text Bool	ζS					
1. Do	ouglas A. Pucknell and K. Eshragian., "Basic VLSI	Design" 3 rd	Edition.	PHI, 2000.		
2. Jol	nn P. Uyemura, "Introduction to VLSI Circuits and	Systems", Jol	ın Wiley	& Sons		
20	02					
3. Ke	sshab K. Parhi, "VLSI DIGITAL SI <mark>G</mark> NAL PROCI	ESSING SYS	TEMS",	John		
Wi	ley & Sons 2002					
4. Ne	il. H.E. Weste and K. Eshragian, "Principles of CM	10S VLSI De.	sign". 2 1	nd Edition.		
Ad	ldison-Wesley, 2000.					
5. R.	Jacob Baker, Harry W. LI., & David K. Boyce., "(CMOS Circuit	Design"	, 3 rd		
Inc	lian reprint, PHI, 2000.					
Reference	es Este		- · · ·			
1. Jar	n M. Rabaey and et al, "DIGITAL INTEGRATED C	<i>CIRCUITS</i> ", P	earson E	dn. Inc.		
20	03					
2. Ka	ng & Leblebigi "CMOS Digital IC Circuit Analysi	s & Design"-	McGraw	v Hill,		
20	03					
3. We	este and Eshraghian, "Principles of CMOS VLSI de	sign" Addiso	<i>n</i> -Wesley	7, 2002		
	2014					
	Course Plan			<u> </u>		
				Semester		
Module	Contents		Hours	Exam		
т	Design of single store MOG A 110 CC C		6			
1	Keview of single stage MOS Amplifiers CS, C	D, CG and	0	13%		
	cascode Amplifiers . Design of current Mirro	Drs, Wilson				
current mirrors and Widlar current mirrors. Band gap						
	voltage reference Differential Amplifiers: N	wius Load				
	Current Source, Current Mirror, Cascade Load.					
TT	CMOS Investor Static Channel it D		7	150/		
11	UNIOS Inverter-Static Unaracteristics, Derivatio	II IOT VIH,	/	13%		

	V IL and VIH Switching Characteristics and Calculation of		
	delay times Sequential Logic Circuits- Different CMOS Flip		
	flops Theory of operation and Circuits of Pass transistor		
	Logic and transmission gate.		
	FIRST INTERNAL EXAMINATION		
III	MOS Operational Amplifiers, Cascode and Folded Cascode	7	15%
	opamps . Stability and frequency compensation in Op amps.		
	Design of a two stage Op amp DRAM, SRAM, Sense		
	Amplifiers, Design of Row and Column Decoders Flash	N.A	
	Memory- NOR and NAND Flash Memory Cell	111	
	TECHNIQUOQUE	A T	
IV	CMOS Circuit and Logic Design-CMOS Logic structures.	7	15%
	Advanced techniques in CMOS Logic Circuits-Mirror	h. And	
	circuits, Pseudo NMOS, Tri-state circuits, Clocked CMOS,		
	Dynamic CMOS Logic circuits, Dual Rail Logic Networks.		
	SECOND INTERNAL EXAMINATION		
V	Arithmetic Circuits in CMOS VLSI-Bit Adder Circuits,	8	20%
	Ripple Carry Adder, Carry Look Ahead Adders, Other High		
	speed adders-Multiplexer based fast binary adders,		
	Multipliers-Parallel multiplier, Wallace Tree and Dadda		
	multiplier, Low power design- Scaling Versus Power		
	consumption, Power reduction techniques.		
VI	Designing Memory and Array Structures - Memory	7	20%
	classification, Memory Core - Read Only Memories, Non-		
	volatile Read Write Memories, Read Write Memories,		
	Content - Addressable or Associative Memories, Memory		
	Peripheral Circuits - Address Decoders, Sense Amplifiers,		
	Designing Combinational Logic Gates in CMOS.		
1			

END SEMESTER EXAMINATION

QUESTION PAPER PATTERN:

Maximum Marks:100

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Exam Duration: 3 Hours

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

(20 x 2 = 40 marks)

(SE T	COURSE NAME	I .T.P.C	INT	YEAR ()F TION	
	EC37	0	Digital Image Processing	3-0-0-3		2016		
Pro	ereauis	site: E	C301 Digital Signal Processing	5-0-0-5		2010		
Co	Course objectives.							
1.	To stu	dy the image fundamentals and mathematical transforms necessary for image						
	transfo	sform						
2.	To stu	dy the	e image processing techniques like image	e enhancement	t, imag	ge		
~ -	recons	struction	on, image compression, image segmenta	tion and image	e repre	esentatior	1.	
Syl	llabus:	c		. , т		, , .	т	
Dig	gital im	age fi	undamentals, 2D Transforms, Image en	hancement, In	nage re	estoration	i, Image	
seg Fv	noctod		mage compression					
Th	e stude	nts wi	ll be able to:					
1.	Distin	guish	/ Analyse the various concepts and ma	athematical tra	ansfori	ms neces	sarv for	
	image	proce	ssing				j	
2.	Differ	entiate	e and interpret the various image enhanc	ement techniq	ues			
3.	Illustra	ate im	age segmentation algorithm					
4.	Analy	se bas	ic image compression techniques					
Te	xt Bool	ks:						
1.	Gonza	lez Ra	atel C, Digital Image Processing, Pearso	n Education, 2	2009		M	
2.	5 Jay Graw	aram Hill 2	an, S Esakkirajan, 1 veerakumar,	Digital image	e proc	essing,	ata Mc	
Re	ference	PS:						
1.	Jain A	nil K	, Fundamentals of digital image process	ing: , PHI,198	38			
2.	Kenne	th R C	Castleman, Digital image processing:, P	earson Educat	ion,2/e	e,2003		
3.	Pratt V	Villiaı	n K, Digital Image Processing: , John	Wiley,4/e,2007	7			
			Course Plan					
M	odule		Course content				End	
						Hours	Sem.	
							Exam Marks	
<u> </u>		Digi	tal Image Fundamentals: Image repres	entation basic			1 111115	
		relati	ionship between pixels, elements of DIP	system. eleme	ents	3		
		of vi	sual perception-simple image formation	model		_		
		Vidi	con and Digital Camera working princip	les		1	15	
	Ι	Brig	htness, contrast, hue, saturation, mach ba	and effect,		1	15	
		Colo	ur image fundamentals-RGB, CMY, H	HIS models		1		
		2D s	ampling, quantization.			1		
		Revi	ew of matrix theory: row and column c	ordering- Toen	litz.	-		
		Circu	alant and block matrix,	6 - P	7	2		
	II	2D I	mage transforms : DFT, its properties,	Walsh transfor	rm,	2	15	
		Hada	amard transform, Haar transform,			3		
		DCT	, KL transform and Singular Value Deco	omposition.		3		
	FIRST INTERNAL EXAM							

III	Image Enhancement:Spatial domain methods: pointprocessing- intensity transformations, histogram processing,image subtraction, image averagingSpatial filtering- smoothing filters, sharpening filtersFrequency domain methods: low pass filtering, high passfiltering, homomorphic filter.	2 1 2	15	
IV	Image Restoration: Degradation model, Unconstraint restoration- Lagrange multiplier and constraint restoration	2		
	Inverse filtering- removal of blur caused by uniform linear motion, Weiner filtering,	2	15	
	Geometric transformations-spatial transformations	2		
SECOND INTERNAL EXAM				
V	Image segmentation : Classification of Image segmentation techniques, region approach, clustering techniques	2		
	Segmentation based on thresholding, edge based segmentation	2	20	
	Classification of edges, edge detection, Hough transform, active contour	3		
VI	Image Compression: Need for compression, redundancy, classification of image compression schemes, Huffman coding, arithmetic coding, dictionary based compression, transform based compression,	5	20	
	Image compression standards- JPEG& MPEG, vector quantization, wavelet based image compression.	3		
END SEMESTER EXAM				

Question Paper Pattern (End semester exam)

Maximum Marks : 100

Time : 3 hours

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly covering the two modules and each question can have maximum four subdivisions. In each part, any two questions are to be answered. Mark patterns are as per the syllabus with 50 % for theory and 50% for logical/numerical problems, derivation and proof.

Course code	Course Name	L-T-P - Credits	Year of Introduction			
**451	Seminar and Project Preliminary	0-1-4-2	2016			
Prerequisite : Nil						
Course Objectives						
• To develop skills in doing literature survey, technical presentation and report preparation.						
• To enable project identification and execution of preliminary works on final semester						
project						
Course Plan						
Seminar: Each student shall identify a topic of current relevance in his/her branch of engineering,						
get approval of faculty concerned, collect sufficient literature on the topic, study it thoroughly,						
prepare own report and present in the class.						
Project prelim	inary:	ITV	1. 0			
Identify suitable	e project relevant to the branch of study.	Form project team (n	ot exceeding four			
students). The students can do the project individually also. Identify a project supervisor. Present						
approved by the	posal before the assessment board (ex-	ciuding the external e	xpert) and get it			
The preliminar	v work to be completed: (1) Literature s	survey (2) Formulation	of objectives (3)			
Formulation of	hypothesis/design/methodology (4) Forn	nulation of work plan (5) Seeking funds			
(6) Preparation	of preliminary report	r r r r v	.,			
Note: The same	e project should be continued in the eighth	n semester by the same	project team.			
Expected outcome.						
The students will be able to						
i. Analyse a current topic of professional interest and present it before an audience						
ii. Identify	an engineering problem, analy <mark>se</mark> it and p	ropose a work plan to se	olve it.			
Evaluation	50					
Seminar (Distribution	: 50 marks	$100/$ \therefore				
(Distribution of guestions : 20	0 k iii Boport : 200()	resentation : 40% II. A	binty to answer			
questions : 30% & 111. Report : 30%) Project proliminary						
progress evalu	lation by the assessment board excluding e	external expert : 60% T	wo progress			
evaluations, mid semester and end semester, are mandatory)						
evaluations, find somester and end somester, are mandatory.						
<i>Note:</i> All evaluations are mandatory for course completion and for awarding the final grade.						
2014						
2014						