BRANCH: Mechanical Engineering

SEMESTER - 8

Course Code	Course Name		L-T-P	Credits	Exam Slot
ME402	Design of Machine Elements	儿	3-0-0	3	A
ME404	Industrial Engineering	-	3-0-0	3	В
	Elective 4		3-0-0	3	С
	Elective 5 (Non Departmental)		3-0-0	3	D
ME492	Project			6	S

Elective 4:-

1. ME462	Propulsion Engineering
----------	------------------------

- 2. ME464 Robotics and Automation
- 3. ME466 Computational Fluid Dynamics
- 4. ME468 Nanotechnology
- 5. ME472 Failure Analysis and Design
- 6. ME474 Micro and Nano Manufacturing
- 7. ME476 Material Handling & Facilities Planning

014

ELECTIVE 5 (NON DEPARTMENTAL ELECTIVE COURSES)

(Note:- If a student has studied or chosen the elective course given within the brackets then the corresponding ND elective cannot be chosen)

- 1. AO482 FLIGHT AGAIST GRAVITY
- 2. AE482 INDUSTRIAL INSTRUMENTATION
- 3. AE484 INSTRUMENTATION SYSTEM DESIGN
- 4. AU484 MICROPROCESSOR AND EMBEDDED SYSTEMS
- 5. AU486 NOISE, VIBRATION AND HARSHNESS
- 6. BM482 BIOMEDICAL INSTRUMENTATION
- 7. BM484 MEDICAL IMAGING & IMAGE PROCESSING TECHNIQUES
- 8. BT461 DESIGN OF BIOLOGICAL WASTEWATER SYSTEMS
- 9. BT362 SUSTAINABLE ENERGY PROCESSES
- 10. CH482 PROCESS UTILITIES AND PIPE LINE DESIGN
- 11. CH484 FUEL CELL TECHNOLOGY
- 12. CE482 ENVIRONMENTAL IMPACT ASSESSMENT
- 13.CE484 APPLIED EARTH SYSTEMS
- 14.CE486 GEO INFORMATICS FOR INFRASTRUCTURE MANAGEMENT
- 15.CE488 DISASTER MANAGEMENT
- 16. CE494 ENVIRONMENT HEALTH AND SAFETY
- 17.CS482 DATA STRUCTURES
- 18.CS484 COMPUTER GRAPHICS
- 19.CS486 OBJECT ORIENTED PROGRAMMING
- 20.CS488 C # AND .NET PROGRAMMING
- 21.EE484 CONTROL SYSTEMS (ME 362/ CONTROL SYSTEM ENGINEERING)
- 22.EE486 SOFT COMPUTING

- 23. EE488 INDUSTRIAL AUTOMATION (ME464/ ROBOTICS AND AUTOMATION)
- 24. EE494 INSTRUMENTATION SYSTEMS
- 25. EC482 BIOMEDICAL ENGINEERING
- 26. FT482 FOOD PROCESS ENGINEERING
- 27. FT484 FOOD STORAGE ENGINEERING
- 28. FT486 FOOD ADDITIVES AND FLAVOURING
- 29.IE482 FINANCIAL MANAGEMENT
- 30. IE484 INTRODUCTION TO BUSINESS ANALYTICS
- 31.IE486 DESIGN AND ANALYSIS OF EXPERIMENTS
- 32. IE488 TOTAL QUALITY MANAGEMENT
- 33.IC482 BIOMEDICAL SIGNAL PROCESSING
- 34. IT482 INFORMATION STORAGE MANAGEMENT
- 35. MA482 APPLIED LINEAR ALGEBRA
- 36. MA484 OPERATIONS RESEARCH (ME 372/ OPERATIONS RESEARCH)
- 37. MA486 ADVANCED NUMERICAL COMPUTATIONS
- 38. MA488 CRYPTOGRAPHY
- 39.MP482 PRODUCT DEVELOPMENT AND DESIGN
- 40. MP469 INDUSTRIAL PSYCHOLOGY & ORGANIZATIONAL BEHAVIOUR
- 41. MP484 PROJECT MANAGEMENT
- 42. MT482 INDUSTRIAL SAFETY
- 43. FS482 RESPONSIBLE ENGINEERING
- 44. SB482 DREDGERS AND HARBOUR CRAFTS
- 45. HS482 PROFESSIONAL ETHICS

Course No.	Course Name	L-T-P- Credits	Year of Introduction
ME 402	Design of Machine Elements-II	3-0-0-3	2016
Prerequisite: N	IE401 Design of Machine Elements-I	A &	4
Course Object • To con • To	tives: provide basic design methods for clutches, brakes, belt c necting rod. introduce the design modifications to be considered for ease o	lrives, bear f manufactu	ings, gears and uring.
Syllabus Design of sin band brake, b contact bearin design of V-l forgings, cast produced on r	gle plate clutches, multiple disc clutches, cone clutch, centri and and block brake, internal expanding shoe brake, rollin ng, spur gear, helical gear, bevel gear, worm and worm v belt drives, selection of roller chains, connecting road, des ings, welded products, rolled sections, turned parts, screw nilling machines.	fugal clutcl g contact b vheel, desig ign recomm machined	h, block brake, pearing, sliding gn of flat belt, nendations for products, parts
Expected outcome The students w 1. Apply designation 2. Design matching	ome: ill be able to gn procedures for industrial requirements. chine comp <mark>on</mark> ents to ease the manufacturing limitations.	7	
Text Books:1.J. E. Sh2.Jalalude3.V.B.Bh	igley, Mechanical Engineering Design, McGraw Hill,2003 een , Machine Dsign, Anuradha Publications, 2016 andari, Design of Machine elements, McGraw Hill, 2016		
References Boo	oks:		-
1. Juvinall 2011	R.C & Marshek K.M., Fundamentals of Machine Componen	t Design, Jo	ohn Wiley,
2. M. F. Sp	otts, T. E. Shoup, Design of Machine Elements, Pearson Edu	cation, 200	6
3. Rajendra	a Karwa, Machine Design , Laxmi Publications (P) LTD, Nev	v Delhi, 20	06
4. Siegel, N	Aaleev& Hartman, Mechanical Design of Machines, Internati	onal Book	Company, 1983
Data books pe 1. K. Maha 2013 2. Narayan 1984 3. PSG Des	ermitted for reference in the examination: Idevan, K.Balaveera Reddy, Design Data Hand Book, CBS P a Iyengar B.R & Lingaiah K, Machine Design Data Handboo sign Data. DPV Printers. Coimbatore. 2012	ublishers & k, Tata Mc	Distributors, Graw Hill,

	Course Plan		
Module	Contents Clutches – friction clutches, design considerations, multiple disc clutches, cone clutch, centrifugal clutch	Hours 2	End Sem. Exam Marks
	Brakes- Block brake, band brake, band and block brake, internal expanding shoe brake	3	
н	Rolling contact bearing- Design of bearings, Types, Selection of a bearing type, bearing life, static and dynamic load capacity, axial and radial loads, selection of bearings, dynamic equivalent load	4	150/
11	Sliding contact bearing- lubrication, lubricants, viscosity, Journal bearings, hydrodynamic theory, Sommerfield number, design considerations, heat balance, bearing housing and mountings	4	15%
	FIRST INTERNAL EXAM		
ш	Gears- classification, Gear nomenclature, Tooth profiles, Materials of gears, Law of gearing (review only), virtual or formative number of teeth, gear tooth failures, Beam strength, Lewis equation, Buckingham's equation for dynamic load, wear load, endurance strength of tooth, surface durability, heat dissipation – lubrication of gears – Merits and demerits of each type of gears.	3	15%
	Design of spur gear	3	
	Design of helical gear	2	
IV	Design of bevel gear	2	15%
	Design of worm & worm wheel	3	
	SECOND INTERNAL EXAM		
	Design of flat belt- materials for belts, slip of the belts, creep, centrifugal tension	3	
V	Design of V-belt drives, Advantages and limitations of V-belt drive	3	20%
	Selection of roller chains, power rating of roller chains, galling of roller chains, polygonal action, silent chain.	3	
X 7 T	Connecting rod – material, connecting rod shank, small end, big end, connecting rod bolts, inertia bending stress, piston	5	20%
V I	Pressure vessels, thin cylinders, Thick cylinder equation, open and closed cylinders.	2	
I	END SEMESTER EXAM	I	

QUESTION PAPER PATTERN

Time: 3 hrs

Note : Use of approved data book is permitted

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 3 questions from module I and II and at least 1 question from each module Each question carries 15 marks

Students will have to answer any 2 questions out of 3 (2X15 marks = 30 marks)

Part B

There should be 3 questions from module III and IV and at least 1 question from each module Each question carries 15 marks Students will have to answer any 2 questions out of 2 (2X15 marks -20 marks)

Students will have to answer any 2 questions out of 3 (2X15 marks = 30 marks)

Part C

There should be 3 questions from module V and VI and at least 1 question from each module Each question carries 20 marks Students will have to answer any 2 questions out of 3 (2X20 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

2014

Ect?

Course code	Course Name	L-T-P-Credits	Year of Introduction
ME404	INDUSTRIAL ENGINEERING	3-0-0-3	2016
	Prerequisite: Nil		

Course Objectives:

- To impart theoretical knowledge about various tools and techniques of Industrial Engineering.
- To create awareness about various safety procedures to be followed in carrying out different types of projects.
- To get acquainted with the Inventory management Principles and Techniques.
- To equip with the theoretical knowledge on Quality control practices and testing methods.

Syllabus

Introduction to Industrial Engineering, Plant layout and Material handling, Methods engineering, Industrial relations, Production planning and control, Quality control and Inspection

Expected outcomes:

The students will be able to

- i. Know various tools and techniques in industrial Engineering.
- ii. Develop work procedure applying the principles of work study.
- iii. Apply inventory control techniques in materials management.
- iv. Formulate replacement and purchase decisions and arrive at conclusions

Text Books:

- 1. B. Kumar, Industrial Engineering Khanna Publishers, 2013
- 2. M Mahajan, Industrial Engineering & Production Management, Dhanpat Rai, 2005
- 3. Martand Telsang, Industrial Engineering & Production Management, S. Chand, 2006
- 4. O. P. Khanna, Industrial Engineering and Management, Dhanpat Rai, 2010

References:

- 1. E. S. Buffa, Modern Production management, John Wiley, 1983
- 2. Grant and Ieven Worth, Statistical Quality Control, McGraw Hill, 2000
- 3. Introduction to work study ILO, Oxford And IBH Publishing, 2008
- 4. Ralph M Barnes, Motion and Time Study, Wiley, 1980

Course					
Module	Estd.	Hours	End Sem. Exam		
			Marks		
I	Introduction to Industrial Engineering - Evolution of modern Concepts in Industrial Engineering - Functions of Industrial Engineering - Field of application of Industrial Engineering Product Development and research- Design function - Objectives of design, - Manufacturing vs purchase- Economic aspects- C-V-P analysis – simple problems-Development of designs- prototype, production and testing - Human factors in design- Value Engineering.	7	15%		
П	Plant layout and Material handling- principles of material handling, Types of material handling equipments, Selection and application. Preventive and break- down maintenance - Replacement policy Methods of replacement analysis-Method of providing for depreciation- Determination of economic life - Simple problems.	7	15%		

FIRST INTERNAL EXAM					
III	Methods engineering: Analysis of work methods using different types of process chart and flow diagrams- Critical examination- Micro motion study and therbligs- Principles of motion economy – Work measurement-Performance ratingDetermination of allowances and standard time Job evaluation and merit rating - Objectives and principles of job evaluationWages and Incentives- Primary wage systems- Wage incentive plans.	7	15%		
IV	Industrial relations- Psychological attitudes to work and working conditions - fatigue- Methods of eliminating fatigue- Effect of Communication in Industry-Industrial safety-personal protective devices-, causes and effects of industrial disputes- Collective bargaining- Trade union - Workers participation in management.	7	15%		
	SECOND INTERNAL EXAM				
V	Production planning and control- Importance of planning - job, batch and mass production-Introduction and need for a new product- product life cycle Functions of production control - Routing , Scheduling, dispatching and follow up- Gantt charts. Inventory Control, Inventory models -Determination of EOQ and reorder level- simple problems- Selective inventory control techniques.	7	20%		
VI	Quality control and Inspection- Destructive and non-destructive testing methods- process capability- Statistical quality control – causes of variation in quality- control charts for X and R. Reliability- causes of failures- Bath tub curveSystem reliability- life testing- Introduction to concepts of, TQM, ISO, Six Sigma and Quality circles (Brief description only).	7	20%		
	END SEMESTER EXAM				

Question paper pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II. Each question carries 10 marks. Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV. Each question carries 10 marks. Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI. Each question carries 10 marks. Students will have to answer any four questions out of 6 (4x10 marks = 40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

Course	code	Course Name L-T-P	Credit	s Year o Introduc	of ction		
IE3	06	SUPPLY CHAIN AND LOGISTICS MANAGEMENT3-0-0	3	2016			
Prerequi	site: N	NI					
Course (Course Objectives To develop knowledge on structures, decision phases, measures and tools of supply chains. To develop understanding on the strategic, tactical and operational decision tools of supply chains. To impart knowledge on logistics management and related advanced tools and techniques. 						
Syllal General network cycle ar Routing,	bus featur desig nd saf , scheo	res of supply chains, planning demand and supply, for n, locations, layouts etc. Supply chain inventory plann fety inventory systems: Logistics management: design duling and sequencing. Advanced logistics decision mode	ecasting, a ning decis of trans ls.	aggregate plan ions, multi-ect portation netw	nning, helon work.		
Exped The i. U ii. U iii. U	cted O studer Jnders Jnders Jnders	Putcome Its will tand the structures, decision phases, measures and tools of tand the strategic, tactical and operational decision tools of tand knowledge on logistics management and related adva	supply ch f supply cl nced tools	ains. ains. and technique	es.		
Text I 1. (2. S F	Books G. Sree Sunil C Pearson	enivasan, Quantitative Models in Operations and Supply Cl Chopra, Peter Meindl, Supply Chain Management – Strateg n Education.	hain Mana gy, Plannin	gement, PHI 1g and Operati	ion,		
 References David Simchi – Levi & Philip Kaminsk, Designing and Managing the Supply Chain, McGraw-Hill Companies Inc. David Taylor and David Brunt, Manufacturing Operations and Supply Chain Management, Vikas Thomson Learning, 2001. Donald J. Bowersox & David J. Closs, Logistical Management, TMH. Jeremy F. Shapiro, Modeling and Supply Chain,. Thomson Learning, 2001. Martin Christopher, Logistics and supply chain management, Financial times management. 							
		COURSE PLAN					
Module		Contents	Нот	irs End-S Exam. N	em. Marks		
I	Gene Struc Metr	eral Features of Supply Chains: Supply Chainstain stures, Decision Phases, Performance Drivers and Measu ics. Achieving Strategic Fit and its Obstacles.	s – ires,	15%			

II	Planning Demand & Supply: Planning demand and supply in supply chains – Forecasting techniques for supply chains, Seasonal Forecasting Models, Measure of Forecast errors.	7	15%
	FIRST INTERNAL EXAM		
ш	AggregatePlanning:AggregatePlanningStrategies,AggregatePlanningmodels - QuantitativeExamples.NetworkDesign, Locations and Layouts:Network design inUncertainEnvironment,FacilityLocation andLayoutdecisions.	47 A	15%
	Multi-echelonInventorySystems:InventoryPlanningDecisions-EstimateofCycleInventory,DiscountingModels,		
IV	Multi-item Inventory models, Determination of Safety Inventory, Impact of Supply Uncertainty, Multi- echelon Inventory models, Quantitative Examples. Bullwhip effect.	7	15%
	SECOND INTERNAL		
v	Logistics Management : 3PL, 4PL, Design Options for Transportation Network. Routing, Scheduling and Sequencing in Transportation, Vehicle Routing Problems. Quantitative Examples.	7	20%
VI	Reverse Logistics: Reverse logistics and Closed Loop Supply Chains. Advanced Logistics Decision Models: Bin Packing Problems, Fixed Charge Problems, Knapsack Problems, Multi- stage transportation problems.	7	20%
	END SEMESTER EXAM		

End Semester Examination Question Paper Pattern

Examination duration: 3 hours

Maximum Marks: 100

Part A (Modules I and II):

Candidates have to answer any 2 questions from a choice of 3 questions. Each full question carries a total of 15 marks and can have a maximum of 4 sub questions (a, b, c, d). No two questions shall be exclusively from a single module. All three questions shall preferably have components from both modules. Marks for each question/sub question shall be clearly specified. Total percentage of marks for the two modules put together as specified in the curriculum shall be adhered to for all combinations of any two questions.

Estd

Part B (Modules III and IV):

(Same as for part A marks)

Part C (Modules V and VI):

(Same as for part A, except that each full question carries 20 marks)

Note: If use of tables and charts are permitted for the university examination for this course, proper direction of the same should be provided on the facing sheet of the question paper.

Course o	code	Course Name	L-T-P- Credits	Year of Introduction
ME46	63	Automobile Engineering	3-0-0-3	2016
Pre requi	sites: N	Vil		
Course of	ojectiv	es DIARDII KAI	AN	
 To To To 	know unders update	the anatomy of automobile in general stand the working of different automotive systems and the latest developments in automobiles	subsystem	5
Syllabus:-	- Engin	e, clutch, transmission, steering, brakes, suspension an	d aerodyna	mics
COURSE	OUT	COMES:		
The stude	nts will	be able to:		
i. Pra	acticall	y identify different automotive systems and subsystem	s.	
ii. Ur	ndersta	nd the principles of transmission, suspension, steering	and brakin	g systems of an
au	tomobi	le		
111. De	evelop a	a strong base for understanding future developments in	the autom	obile industry
Text Bool	ks		6	
1. Gupta	R.B. A	uto design, Satya Prakash, New Delhi, 2015		
2. Heinz	Heisle	r, Advanced engine technology, Butterworth-Heinema	nn,1995	
3. Heinz	Heisle:	r, Advanced vehicle technology, Society of Automotiv	e Engineer	s Inc, 2002 Thornes, 2004
5. Tom I	Denton,	Automobile mechanical and electrical systems, Butter	worth-Hei	nemann, 2011
		Course Plan		
Module		Contents	Hours	End Sem. Exam. Marks
	Piston	: - material for piston, clearances, piston rings, types,	1	
	Piston rod, c	for IC engine, piston rings, piston pin, connecting rank shaft, crank pin, cam shaft, valves, fly wheel,	1	
T	stress	in a fly wheel rim, simple problems.	1	15%
-	Petrol and ca	fuel injection systems: - comparison petrol injection arbureted fuel supply systems- comparison –multiport	1	1.5 /0
	fuel i (CRD	njection (MPFI) and common rail direct injection I) systems.	1	
	Super engine lag.	charging systems: fundamentals, naturally aspirated es and supercharged engines– Turbo charger, turbo	1	

	Hybrid cars, safety overview -Formula-I engine technology: overview, electrical technology, brakes, transmission technology	1	
II	Friction clutch:- fundamentals, driven plate inertia, driven plate transmitted torque, driven plate wear –angular driven plate cushioning and torsional damping, clutch friction materials, when clutch is worn out.		
	Pull type diaphragm clutch, multiple diaphragm clutch, multi-plate hydraulically operated automatic transmission clutch, semi centrifugal clutch, fully automatic centrifugal clutch, and integral single plate diaphragm clutch.	AI	15%
	Need of gear box, resistance to vehicle motion, power to weight ratio, speed operating range-five speed and reverse	1	
	sliding mesh, constant mesh, and synchromesh gear boxes:- gear synchronization and engagement.	1	
	Over drives – hydrodynamic fluid couplings: - efficiency and torque capacity – fluid friction coupling- torque	1	
	CONVERTERS.	1	
	Steering:-basic principle of a steering system:- swinging	1	
	beam system – Ackermann –over steer and under steer –	1	
	slip angle, camber, caster etc.	1	
	Swivel axis inclination: centre point steering, camber, king pin inclination, negative offset, caster, toe-in and toe-out	1	
III	Steering gear box: - fundamentals screw and nut steering gear mechanism-worm and roller type steering gear box –	1	15%
	Re-circulating ball nut and rocker lever, re-circulating ball rack and sector steering gear box– need of power assisted	1	
	steering.	1	
	External direct coupled and rack and pinion and integrated steering power cylinder, power assisted steering lock limitations	1	
IV	Suspension: - suspension geometry, terminology- Macpherson strut friction and spring offset - suspension roll centers:-roll centers, roll axis, roll centre height, short swing and long arm suspension transverse double	1	
	wishbone, parallel trailing double arm and vertical pill strut suspension, Macpherson strut suspension, semi-trailing arm rear suspension, telescopic suspension.	1	15%
	High load beam axle leaf spring, sprung body roll stability. Rear axle beam suspension- body roll stability analysis:- body roll couple, body roll stiffness, body over turning couple	1	

	Body weight transfer body direct weight transfer couple		
	body weight transfer, body ander weight transfer eouple,	1	
	lateral force distribution	1	
	Anti roll hars and roll stiffness: anti roll har function		
	And fon bars and fon summess and fon bar function,		
	operating principle, anti roll bar action caused by the body	1	
	rolling, single wheel lift -rubber spring bumper:-bump stop	AA	
	function and characteristics, axis inclination.	A N	
	Rear suspension: - live rigid axle suspension, non drive rear	1 11 1	
	suspension- swing arm rear wheel drive independent	1	
	suspension.	AL	
	Low pivot split axle coil spring wheel drive independent	e	-
	suspension, trailing and semi trailing arm rear wheel drive	1	
	independent suspension		15%
	Transverse double link arm rear wheel drive independent		
	mansverse double link and lear wheel suspension	1	
	Suspension, De Dion axie real wheel suspension -	1	
	Hydrogen suspension, nydro-pneumatic automatic neight		
	correction suspension.		
	SECOND INTERNAL EXAMINATION		
	Brakes:- mechanical and hydraulic brakes (review only) –		
	properties of friction lining and pad materials, efficiency,	1	
	stopping distance, theory of internal shoe brake, equations –	6	
	effect of expanding mechanism of shoes on total braking		
	torque equations	1	
	Braking vehicles: brakes applied on rear front and all four		
	blaking venicles blakes applied on fear, none and an four	1	
	wheels, equations –calculation of mean mining pressure and		
	neat generation during braking operation, equations. –	1	
	braking of vehicle moving on curved path, simple	1	
V	problems.		20%
	Anti Lock Braking system (ABS):- need and advantages of		
	ABS – hydro-mechanical ABS - hydro-electric ABS -	1	
	air-electric ABS.		
	Brake servos: - operating principle, vacuum servo - direct		
	acting suspended vacuum assisted brake servo unit	1	
	operation - hydraulic servo assisted brake systems.		
	Pneumatic operated disc brakes – air operated brake		
	systems: - air over hydraulic brake system - Three line	1	
	brake system.— electronic-pneumatic brakes	-	
	Aarodynamia drag: praesure drag air registance opposing		
	motion of a vahiala equations offer flow welks drag	1	
	mouon of a venicle, equations, after now wake, drag		
	coefficients, various body snapes, base drag, vortices,	1	
V1	training vortex drag, attached transverse vortices.		20%
	Aerodynamic lift:-lift coefficients, vehicle lift, underbody	1	
	floor height versus aerodynamic lift and drag, aerofoil lift	1	
	and drag, front end nose shape.	1	
	Car body drag reduction:-profile edge chamfering, bonnet	1	

slope and wind screen rake, roof and side panel chamfering,		
rear side panel taper, underbody rear end upward taper, rear		
end tail extension, underbody roughness.		
Aerodynamic lift control:- underbody dams, exposed wheel		
air flow pattern, partial enclosed wheel air flow pattern, rear	1	
end spoiler, negative lift aerofoil wings.		
After body drag: - square back drag, fast back drag, hatch back drag, notch back drag.	1	
END SEMESTER EXAMINATION		

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4x10 marks = 40 marks)

2014

Note: Each question can have a maximum of four sub questions, if needed.

Course code	Course	e Name	L-T-P- Credits	Y Intr	ear of oduction	
ME474	Micro and Nano	Manufacturing	3-0-0-3		2016	
	Prerea	nisite: Nil	0000		2010	
Course Objectives	110104					
1. To give away	eness of different techniqu	es used in micro and na	no manufa	acturin	g	
2. To give in-de	oth idea of the convention	al techniques used in m	icro manu	facturi	ng	
3. To introduce	Non-conventional micro-	nano manufacturing and	l finishing	appro	baches	
4. To introduce	Micro and Nanofabricat	tion Techniques and c	other proc	essing	routes in	
Micro and na	o manufacturing	DOITS	7	Sec. 4		
5. To know dif	rent techniques used in M	licro Joining and the mo	etrology to	ols in	micro and	
nano manufa	turing.	LINDIL				
Svllabus						
Introduction to Prec	ion engineering- Bulk mi	cromachining – Micro-	energy -Ca	arbon 1	Nanotubes	
- Molecular Logic	ates and Nanolevel Bios	sensors - Conventional	Micro M	achini	ng - Non-	
conventional micro-	ano manufacturing and f	inishing approaches - I	Micro and	Nano	Finishing	
Processes - Micro	nd Nanofabrication Tech	nniques - Micro Joinin	ng - Char	acteriz	ation and	
metrology tools.						
Expected outcome						
The students will						
1. get an aware	ess of different techniques	s <mark>us</mark> ed in micro and nan	o manufac	turing.		
2. get in-depth	lea of the conventional tec	c <mark>hn</mark> iques used in micro :	manufactu	ring.		
3. become awa	e about non-conventional	micro-nano manufactui	ring and fi	nishing		
approaches.						
4. get awarenes	on micro and nano finish	ing processes.				
5. understand n	cro and nanofabrication to	echniques and other pro	cessing ro	utes in	micro	
and nano ma	ulaciuring.	miaro joining and the	motrology		n miara	
o. Know about o	inerent techniques used in	i micro joining and the	metrology	toois i	II IIICIO	
and nano manufacturing.						
1 Mark I Jack	on Micro and Nano-man	ufacturing Springer 20	06			
2 Mark I Jack	on, Micro-fabrication and	Nano-manufacturing -	Pulsed wa	ater dro	n	
micromachir	ng CRC Press 2006.	i i tuno manaraotaring	i dibed we	uer ur	^p P	
3. Nitaigour Pr	nchand Mahalik. Micro-n	nanufacturing and Nanc	technolog	v. 200	6.	
4. V.K.Jain, M	ro-manufacturing Process	es, CRC Press, 2012.		<i>J</i> , _ • •		
,						
Course Plan						
					End	
Module	Conten	ts	Н	lours	Sem.	
					Exam. Morka	
Introduce	on to Precision anginari	ng macro milling and	miero		WIATKS	
drilling	Micro-electromechanical	systems – merits	and			
I annlicati	ns Micro nhenomenon	in Electro-photogram	hv _	1	15%	
applicati	ns		2.1.5			

	Introduction to Bulk micromachining, Surface micromachining- steps, Micro instrumentation – applications, Micro Mechatronics,	1	
	Nanofinishing – finishing operations. Laser technology in micro manufacturing- Practical Lasers,	1	
	Introduction of technology fundamentals Introduction to Micro-energy and chemical system (MECS), Space Micro-propulsion, e-Beam Nanolithography – important	1	
	techniques, Introduction to Nanotechnology Carbon Nano-tubes – properties and structures, Molecular Logic Gates and Nano level Biosensors - applications	1	
II	Introduction to mechanical micromachining, Micro drilling – process, tools and applications	1	15%
	Micro turning- process, tools and applications, Diamond Micro turning – process, tools and applications	1	
	Micro milling and Micro grinding – process, tools and applications	1	
	Micro extrusion- process and applications	1	
	Micro bending with Laser	1	
	FIRST INTERNAL EXAMINATION	1	
	Introduction to Non-conventional micro-nano manufacturing	1	
ш	Process, principle and applications – Abrasive Jet Micro Machining, WAJMM	1	15%
	Micro EDM, Micro WEDM, Micro EBM – Process principle, description and applications	1	
	Micro ECM, Micro LBM - Process principle, description and applications	1	
	Focused ion beams - Principle and applications	1	
	Introduction to Micro and Nano Finishing Processes	1	
IV	Magnetorheological Finishing (MRF) processes, Magnetorheological abrasive flow finishing processes (MRAFF) – process principle and applications	1	15%
	Force analysis of MRAFF process,	1	
	Magnetorheological Jet finishing processes	1	
	Working principle and polishing performance of MR Jet Machine	1	
	Elastic Emission Machining (EEM) – machine description, applications	1	
	Ion Beam Machining (IBM) – principle, mechanism of material removal, applications	1	
	Chemical Mechanical Polishing (CMP) – Schematic diagram, principle and applications	1	
	SECOND INTERNAL EXAMINATION		
V	Introduction to Micro Fabrication: basics, flowchart, basic chip	1	20%

	making processes		
	Introduction to Nanofabrication, Nanofabrication using soft		
	lithography – principle, applications – Examples (Field Effect	1	
	Transistor, Elastic Stamp)		
	Manipulative techniques – process principle, applications	1	
	Introduction to Carbon nano materials – CN Tubes	1	
	CN Tubes – properties and applications	1	
	CN Tube Transistors – Description only	1	-
	Diamond - Properties and applications	1	
	CVD Diamond Technology	1	
	LIGA Process	1	
	Laser Micro welding – description and applications, Defects	1	
	Electron Beam Micro-welding – description and applications	1	
	Introduction to micro and nano measurement, defining the scale,	1	
	uncertainty	1	
V1	Scanning Electron Microscopy – description, principle	1	
	Scanning White-light Interferometry – Principle and application	1	
	Optical Microscopy – description, application	1	20%
	Scanning Probe Microscopy, scanning tunneling microscopy-		
	description, application	1	
	Confocal Microscopy - description, application	1	
	Introduction to On-Machine Metrology	1	
	END SEMESTER EXAMINATION]
	END SEIVIESTER EAAIVIIIVATION		

Question Paper Pattern

Estd.

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4x10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.