BRANCH: Mechanical Engineering

SEMESTER - 7

Course Code	Course Name	L-T-P	Credits	Exam Slot
ME401	Design of Machine Elements I	3-1-0	4	Α
ME403	Advanced Energy Engineering	3-0-0	3	в
ME405	Refrigeration and Air Conditioning	2-1-0	3	С
ME407	Mechatronics	3-0-0	3	D
ME409	Compressible Fluid Flow	2-1-0	3	E
	Elective 3	3-0-0	3	F
ME451	Seminar & Project Preliminary	0-1-4	2	S
ME431	Mechanical Engineering Lab	0-0-3	1	т
Total Credit	s = 22 Hours: 27 (Cumulative	Credits=	162

Elective 3:-

1. ME461	Aerospace Engineering	
2. ME463	Automobile Engineering	
3. ME <mark>465</mark>	Industrial Hydraulics	

- 4. IE306 Supply Chain and Logistics Management
- 5. ME467 Cryogenic Engineering
- 6. ME469 Finite Element Analysis
- 7. ME471 Optimization Techniques

BRANCH: Mechanical Engineering

SEMESTER - 8

	A DI A DIDI	TT	V	AT	AAA
Course Code	Course Name	1	L-T-P	Credits	Exam Slot
ME402	Design of Machine Elements II		3-0-0	3	A
ME404	Industrial Engineering	F	3-0-0	3	В
	Elective 4	Î	3-0-0	3	С
	Elective 5 (Non Departmental)		3-0-0	3	D
ME492	Project			6	S
Total Credits = 18 Hours: 30 Cumulative Credits = 180					

Elective 4:-

1. ME462	Propulsion	Engineering
----------	------------	-------------

- 2. ME464 Robotics and Automation
- 3. ME466 Computational Fluid Dynamics
- 4. ME468 Nanotechnology
- 5. ME472 Failure Analysis and Design
- 6. ME474 Micro and Nano Manufacturing
- 7. ME476 Material Handling & Facilities Planning

2014

Course code	Course Name	L-T-P- Credits	Year of Introduction
ME403	ADVANCED ENERGY ENGINEERING	3-0-0-3	2016
Prereauisite:	Nil producer and the second second	T A A	

Course Objectives:

- 1. To give an idea about global energy scenario and conventional energy sources
- 2. To understand solar, wind and Biomass energy
- 3. To know concepts of other renewable energy sources
- 4. To create awareness on the impacts of energy conversion and importance of sustainable energy

Syllabus

Global and Indian energy scenario, conventional energy sources, environmental effect of energy conversion, renewable energy sources- solar, wind, biomass, brief account of other renewable energy sources –geothermal, tidal, MHD, hydrogen, fuel cells, small scale hydro power plants. Environmental impact and Sustainability issues.

Expected outcome:

The students will be able to

- i. Understand energy scenario and the environmental effects of energy conversion.
- ii. Become aware of different renewable energy sources and choose sustainable energy for

Text Books:

- 1. Jefferson W Tester et.al., Sustainable Energy: Choosing Among Options, PHI, 2006
- 2. P K Nag, Power Plant Engineering, TMH, 2002
- 3. Tiwari G N, Ghosal M K, Fundamentals of renewable energy sources, Alpha Science International Ltd., 2007

References Books:

- 1. David Merick, Richard Marshall, Energy, Present and Future Options, Vol.I & II, John Wiley & Sons, 2001
- 2. Godfrey Boyle, Renewable Energy : Power for a Sustainable Future, Oxford University Press, 2012
- 3. Roland Wengenmayr, Thomas Buhrke, 'Renewable Energy: Sustainable energy concepts for the future, Wiley VCH, 2012
- 4. Twidell J W and Weir A D, Renewable Energy Resources, UK, E&F.N. Spon Ltd., 2006

	Course Plan					
Module	Contents 2014	Hours	End Sem. Exam Marks			
Ι	Introduction to the course. Global and Indian energy resources. Energy Demand and supply. Components, layout and working principles of steam, hydro, nuclear, gas turbine and diesel power plants	7	15%			
п	Solar Energy- passive and active solar thermal energy, solar collectors, solar thermal electric systems, solar photovoltaic systems. Economics of solar power. Sustainability attributes.	7	15%			
	FIRST INTERNAL EXAM					

III	Wind Energy-Principle of wind energy conversion system, wind data and energy estimation, wind turbines, aerodynamics of wind turbines, wind power economics. Introduction to solar-wind hybrid energy systems	7	15%
IV	Biomass Energy – Biomass as a fuel, thermo-chemical, bio-chemical and agro-chemical conversion of biomass- pyrolysis, gasification, combustion and fermentation, transesterification, economics of biomass power generation, future prospects.	6	15%
	SECOND INTERNAL EXAM		
V	Other Renewable Energy sources – Brief account of Geothermal, Tidal, Wave, MHD power generation, Small, mini and micro hydro power plants. Fuel cells – general description, types, applications. Hydrogen energy conversion systems, hybrid systems- Economics and technical feasibility	8	20%
VI	Environmental impact of energy conversion – ozone layer depletion, global warming, greenhouse effect, loss of biodiversity, eutrophication, acid rain, air and water pollution, land degradation, thermal pollution, Sustainable energy, promising technologies, development pathways	7	20%
	END SEMESTER EXAM		

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

Course code	Course Name	L-T-P- Credits		ear of oduction
ME 40	5 REFRIGERATION AND AIR CONDITIONING	2-1-0-3)16
		2-1-0-3	20	10
-	ite: ME205 Thermodynamics	T A	h . A	
1. To 2. To 3. To 4. To	Objectives: b) introduce vapour compression and vapour adsorption syste b) impart knowledge on refrigeration cycles and methods to b) familiarize the components of refrigeration systems b) introduce air conditioning systems b) know the applications of refrigeration and air conditioning	improve perfc	ormance	
Syllabus			_	
Introduc refrigera Refriger	ction, Thermodynamics of refrigeration, Air refrigera- tion, Adiabatic demagnetization of paramagnetic salts, and their properties, Application of refrigeration, Ref itioning, Psychrometry, Air conditioning systems.	Vapour comp	ression s	ystems,
	outcome:			
-	onts will be able to			
i.	Understand the principles refrigeration of air-conditioning a	and basic desig	gn conside	erations.
ii.	Carry out analysis of refrigeration cycles	20		
iii.	Apply the concepts of indoor environmental comfort.			
iv.	Perform psychrometric calculations, humidity control a	and analysis	of air-co	nditionin
	processes	j		
v.	Know the various applications of Refrigeration and air cond	litioning		
2. Ar 3. Ba	ks: ora C. P, Refrigeration and Air-Conditioning, McGraw-Hill, ora S. C. and Domkundwar, Refrigeration and Air-Condition laney P. L, Refrigeration and Air-Conditioning, Khanna Pub nohar Prasad, Refrigeration and Air-Conditioning, New Age	ing, Dhanpat blishers, New	Delhi, 201	
Referenc	es Books:			
2. Do	HRAE Handbook ssat. R. J, Principles of Refrigeration, Pearson Education Ind ecker W.F, Refrigeration and Air-Conditioning, McGraw-H		Company	, 2009
	Course Plan			
	2014			Sem.
Module	Contents		Hours	Exam
				Marks
Ι	Introduction – Brief history and applications of re Thermodynamics of refrigeration- reversed Carnot cycle- and refrigeration machines, Limitations of reversed Carnot of refrigeration- Air refrigeration systems- Reversed Joul	- heat pump t cycle. Unit	6	15%

II	Vortex tube refrigeration-Very low temperature refrigeration systems (concept only). Adiabatic demagnetization of paramagnetic salts Vapour compression systems-simple cycle - representation on T- s and P- h Diagrams. COP- Effect of operating parameters on COP – methods of improving COP of simple cycle- super- heating , under cooling, Liquid suction heat exchanger, actual cycle. FIRST INTERNAL EXAM	8	15%
ш	Multi pressure systems - multi compression and multi evaporator, systems. Inter cooling - flash inter cooling and flash gas removal- Different combinations of evaporator and compressor for different applications, Cascade system Refrigerants and their properties-Eco-friendly Refrigerants, mixed refrigerants, selection of refrigerants for different applications Vapour absorption systems - Ammonia – water system - simple system- drawbacks-Lithium Bromide water system- Electrolux- comparison with vapour compression system- steam jet refrigeration.	7	15%
IV	Application of refrigeration- domestic refrigerators- water coolers- ice plants. Cold storages- food preservation methods- plate freezing, quick-freezing. Refrigeration system components- Compressors, condensers, expansion devices, evaporators. Cooling towers- Different types and their application fields- Refrigerant leakage and detection – charging of refrigerant – system controls. SECOND INTERNAL EXAM	6	15%
	Air conditioning – meaning and utility, comfort and industrial air		
V	All conditioning – meaning and utility, conflott and industrial and conditioning. Psychometric properties- saturated and unsaturated air, dry, wet and dew point temperature – humidity, specific humidity, absolute humidity, relative humidity and degree of saturation- thermodynamic equations- enthalpy of moisture- adiabatic saturation process -psychrometers. Thermodynamic wet bulb temperature, psychometric chart- Psychometric processes- adiabatic mixing- sensible heating and cooling- humidifying and dehumidifying, air washer – bypass factor- sensible heat factor-RSHF and GSHF line- Design condition- Apparent dew point temperature – Choice of supply condition, state and mass rate of dehumidified air quantity – Fresh air supplied –air refrigeration. Comfort air conditioning- factors affecting human comfort. Effective temperature – comfort chart. Summer air conditioning- factors affecting-cooling load estimation.	8	20%
VI	Air conditioning Actors affecting beauting system- packaged system-all air system-chilled water system. Winter air conditioning – factors affecting heating system, humidifiers. Year round air conditioning AC system controls-thermostat and humidistat. Air distribution systems- duct system and design- Air conditioning of restaurants, hospitals, retail outlets, computer center, cinema theatre, and other place of amusement. Industrial applications of air conditioning.	7	20%

Time: 3 hrs

Use of approved Refrigerant tables permitted

Maximum marks: 100

The question paper should consist of three parts

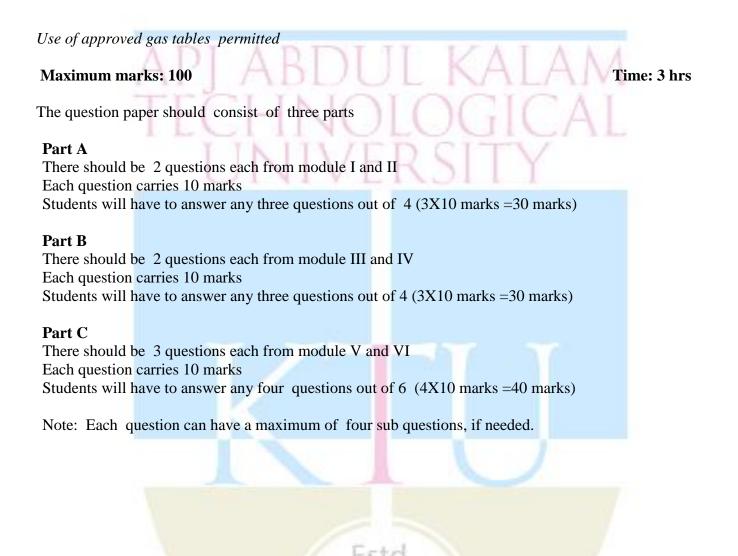
Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C


There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

2014

Course co	de Course Name	L-T-P- Credits	Year of Introduction
ME409	COMPRESSIBLE FLUID FLOW	2-1-0-3	2016
Prerequi	site: ME205 Thermodynamics	AA	
• To u	jectives: amiliarize with behavior of compressible gas flow. nderstand the difference between subsonic and supersonic flow amiliarize with high speed test facilities	v AI	
Irreversible Flow through	n to Compressible Flow, Wave propagation, One dimensio discontinuity in supersonic flow, Flow in a constant area duct igh constant area duct with heat transfer (Rayleigh Flow) on and measurement, measurement in compressible flow, Wind	with friction (), Compressib	(Fanno Flow),
i. 1 ii. 1 iii. 1	s will be able to Formulate and solve problems in one -dimensional steady comp sentropic nozzle flow, constant area flow with friction (Fanno with heat transfer (Rayliegh flow). Derive the conditions for the change in pressure, density and ten formal shock. Determine the strength of oblique shock waves on wedge shape Know the various measuring instruments used in compressible	flow) and con- mperature for ed bodies and o	stant area flow flow through a
•	as tables: . M., Gas Tables, New Age International, 2011 ndran P., Gas Tables, Prentice-Hall of India Pvt. Limited, 2011	/	
 Rathakr Yahya S 	: ndran P., Fundamentals of Compressible Fluid Dynamics, PHI shnan E., Gas Dynamics, PHI Learning, 2014 . M., Fundamentals of Compressible Flow with Aircraft and Ro onal Publishers, 2003		
References	Books : on, Modern compressible flow, 3e McGraw Hill Educatio	m. 2012	

	Course Plan		
Module	Contents		End Sem. Exam
	ADI ADDITI VALA	A	Marks
I	Introduction to Compressible Flow- Concept of continuum-system and control volume approach- conservation of mass, momentum and energy- stagnation state- compressibility-Entropy relations. Wave propagation- Acoustic velocity-Mach number-effect of Mach number on compressibility- Pressure coefficient-physical difference between incompressible, subsonic, sonic and supersonic flows- Mach cone-Sonic boom-Reference velocities- Impulse function-adiabatic energy equation-representation of various flow regimes on steady flow adiabatic ellipse.	8	15%
п	One dimensional steady isentropic flow- Adiabatic and isentropic flow of a perfect gas- basic equations- Area-Velocity relation using 1D approximation-nozzle and diffuser-mass flow rate-chocking in isentropic flow-flow coefficients and efficiency of nozzle and diffuser- working tables-charts and tables for isentropic flow- operation of nozzle under varying pressure ratios –over expansion and under expansion in nozzles.	7	15%
	FIRST INTERNAL EXAM		
III	Irreversible discontinuity in supersonic flow- one dimensional shock wave- stationary normal shock- governing equations- Prandtl- Meyer relations- Shock strength- Rankine- Hugoniot Relation- Normal Shock on T-S diagram- working formula- curves and tables-Oblique shock waves - supersonic flow over compression and expansion corners (basic idea only).	7	15%
IV	Flow in a constant area duct with friction (Fanno Flow) – Governing Equations- Fanno line on h-s and P-v diagram- Fanno relation for a perfect gas- Chocking due to friction- working tables for Fanno flow- Isothermal flow(elementary treatment only)	6	15%
	SECOND INTERNAL EXAM		
v	Flow through constant area duct with heat transfer (Rayleigh Flow)- Governing equations- Rayleigh line on h-s and P-v diagram- Rayleigh relation for perfect gas- maximum possible heat addition- location of maximum enthalpy point- thermal chocking- working tables for Rayleigh flow.	6	20%
VI	Compressible flow field visualization and measurement- Shadowgraph-Schlieren technique- interferometer- subsonic compressible flow field -measurement (Pressure, Velocity and Temperature) – compressibility - correction factor- hot wire anemometer- supersonic flow measurement- Shock tube-Rayleigh Pitot tube- wedge probe- stagnation temperature probe- temperature recovery factor –Kiel probe - Wind tunnels – closed and open type- END SEMESTER EXAM	8	20%

2014

Course code	Course Name	L-T-P- Credits	Year of Introduction
ME431	MECHANICAL ENGINEERING LAB.	0-0-3-1	2016
Prerequisit	e : ME302 Heat and mass transfer, ME304 Dynamics of macl	hinery	
Course Ob	ojectives:		
•]	To conduct the various heat transfer experiments	A & A	
•]	To practice calibration of thermometer and pressure gauges	A M	
	To do experiments on dynamics	TIAT	
		A	
Syllabus	TECHNOLOGIC		
List of exp			
Hear trans			~ .
	rmination of LMTD and effectiveness of parallel flow, Counter f	low and cross	flow heat
	angers(double pipe heat exchanger)		
	rmination of heat transfer coefficients in free convection(free co		
	rmination of heat transfer coefficients in forced convection (forc	ed convection	apparatus)
	rmination of thermal conductivity of solids(composite wall)		
	rmination of thermal conductivity of powder		
	rmination of Thermal conductivity of liquids		
	rmination of emissivity of a specimen (emissivity apparatus)	atrea)	
	rmination of Stefan Boltzman constant (Stefan Boltzmann appara	atus)	
	y and performance test on refrigeration (Refrigeration Test rig)	na taat mia)	
	y and performance test air conditioning equipment(air conditioni	ng test rig)	
	ormance study on heat pipe(Heat pipe) oration of Thermocouples		
	pration of Pressure gauge		
Dynamic			
•	rling of shaft		
14. Will 15. Gyre	-		
•	versal governor apparatus		
	vibration analysis		
	ced vibration analysis		
	linimum 9 experiments in heat transfer and 3 experiments in dynar	nics are mand	atorv
Expected of			
	ts will be able to		
	luct experiments to determine thermal conductivity of materials	S	
	rmine heat transfer coefficient, LMTD etc		
	calibration of thermometers and pressure gauges		
	onstrate the effect of unbalances resulting from rotary motions		
	alise the effect of dynamics on vibrations in single and multi deg		
	onstrate the working principle of governor /gyroscope and demo	onstrate the eff	ect of forces and
mon	ients on their motion		

Course	code	Cour	se Name	L-T-P-Credits	Year	of Intro	oduction
ME4	07	MECHA	ATRONICS	3-0-0-3		2016	
Prerequisi	ite: Nil						
Course C • • • • • • • • • • • • • • • • • • •	D bjectives To intro To stuc To enal applica tion to N onics in C orce and	oduce the features ly the fabrication and ble development of tions Mechatronics, sens Computer Numeric tactile sensors, Ima	of various sensors used nd functioning of MEM hydraulic/pneumatic sors, Actuators, Micro al Control (CNC) mac age processing techniqu	AS pressure and inert circuit and PLC prog D Electro Mechanic chines, Mechatronics	tial sens grams fo cal Syst	ors or simple tems (M potics-Ele	EMS), ectrical
 Person 2. Rama Mecha 3. Saeed 	Integra <u>mechat</u> ks: n W., Me n Educati chandran anical Ele	te mechanical, elec ronics systems echatronics: Electro on Limited, New D K. P., G. K. V ectronic Systems, V , Introduction to R	stems used in mechatro tronics, control and co onic Control Systems Delhi, 2007 ijayaraghavan, M. S. Viley India Pyt. Ltd., N obotics: Analysis, Syst	mputer engineering i in Mechanical and Balasundaram, Me lew Delhi, 2008.	Electric	al Engin nics: Inte	egrated
Reference 1. David McGr 2. Gorde 3. HMT 4. Vijay	es Books G. Alda aw-Hill I on M. Ma G. Mechat K. Vara	: tore, Michael B. H nc., USA, 2003. ir, Industrial Robot ronics, Tata McGra dan, K. J. Vinoy, S	listand, Introduction to tics, Prentice Hall Inter aw-Hill Publishing Cor S. Gopalakrishnan, Sn John Wiley & Sons Lu	national, UK, 1998. npany Ltd., New De nart Material Systen	lhi, 200	4.	
	evelopin	int methodologies,	Course Plan	a., England, 2000.	-/		
Module			Contents			Hours	End Sem. Exam Marks
I	- Chara position inductiv and abs	acteristics -Temper a and proximity we, capacitive and olute, gray coded of Acoustic Emission	ics: Structure of Mech rature, flow, pressure sensing by magnet eddy current methods encoder. Resolvers and on sensors. Principle	sensors. Displacem ic, optical, ultrasc Encoders: increme synchros. Piezoelec	ent, onic, ontal ctric	8	15%

Π	Actuators: Hydraulic and Pneumatic actuators - Directional control valves, pressure control valves, process control valves. Rotary actuators. Development of simple hydraulic and pneumatic circuits using standard Symbols.	7	15%
	FIRST INTERNAL EXAM	4	1
III	Micro Electro Mechanical Systems (MEMS): Fabrication: Deposition, Lithography, Micromachining methods for MEMS, Deep Reactive Ion Etching (DRIE) and LIGA processes. Principle, fabrication and working of MEMS based pressure sensor, accelerometer and gyroscope.	6	15%
IV	Mechatronics in Computer Numerical Control (CNC) machines: Design of modern CNC machines - Mechatronics elements - Machine structure: guide ways, drives. Bearings: anti-friction bearings, hydrostatic bearing and hydrodynamic bearing. Re-circulating ball screws, pre-loading methods. Re-circulating roller screws. Typical elements of open and closed loop control systems. Adaptive controllers for machine tools. Programmable Logic Controllers (PLC) –Basic structure, input/ output processing. Programming: Timers, Internal Relays, Counters and Shift registers. Development of simple ladder programs for specific purposes.	8	15%
	SECOND INTERNAL EXAM		•
V	 System modeling - Mathematical models and basic building blocks of general mechanical, electrical, fluid and thermal systems. Mechatronics in Robotics-Electrical drives: DC, AC, brushless, servo and stepper motors. Harmonic drive. Force and tactile sensors. Range finders: ultrasonic and light based range finders 	6	20%
VI	 Robotic vision system - Image acquisition: Vidicon, charge coupled device (CCD) and charge injection device (CID) cameras. Image processing techniques: histogram processing: sliding, stretching, equalization and thresholding. Case studies of Mechatronics systems: Automatic camera, bar code reader, pick and place robot, automatic car park barrier system, automobile engine management system. 	7	20%

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II. Each question carries 10 marks. Students will have to answer any three questions out of 4 (3X10 = 30 marks)

Part B

There should be 2 questions each from module III and IV. Each question carries 10 marks. Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.