SEMESTER -3

DISCRETE MATHEMATICAL STRUCTURES

MAT 203	DISCRETE MATHEMATICAL	CATEGORY	L	T	P	CREDITS
	STRUCTURES					

Preamble:

The purpose of this course is to create awareness in students about the basic terminologies used in advanced courses in Computer Science and develop rigorous logical thinking for solving different kinds of problems in Computer Science. This course helps the learner to apply the theory and applications of elementary Counting Principles, Propositional Logic, Predicate Logic, Lattices, Generating Functions, Recurrence Relations and Algebraic Structures eventually in practical applications.

Prerequisite: A sound background in higher secondary school Mathematics

Course Outcomes: After the completion of the course the student will be able to

CO\#	CO
CO1	Check the validity of predicates in Propositional and Quantified Propositional Logic using truth tables, deductive reasoning and inference theory on Propositional Logic (Cognitive Knowledge Level: Apply)
CO2	Solve counting problems by applying the elementary counting techniques - Rule of Sum, Rule of Product, Permutation, Combination, Binomial Theorem, Pigeonhole Principle and Principle of Inclusion and Exclusion (Cognitive Knowledge Level: Apply)
CO3	Classify binary relations into various types and illustrate an application for each type of binary relation, in Computer Science (Cognitive Knowledge Level: Understand)
$\mathbf{C O 4}$	Illustrate an application for Partially Ordered Sets and Complete Lattices, in Computer Science (Cognitive Knowledge Level: Apply)
CO5	Explain Generating Functions and solve First Order and Second Order Linear Recurrence Relations with Constant Coefficients (Cognitive Knowledge Level: Apply)
CO6	Illustrate the abstract algebraic systems - Semigroups, Monoids, Groups, Homomorphism and Isomorphism of Monoids and Groups (Cognitive Knowledge Level: Understand)

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
$\operatorname{Co3}$												
$\operatorname{Co4}$												
$\operatorname{co5}$												
$\operatorname{Co6}$												

Abstract POs defined by National Board of Accreditation			
PO\#	Broad PO	PO\#	Broad PO
PO1	Engineering Knowledge	PO7	Environment and Sustainability
PO2	Problem Analysis	PO8	Ethics
PO3	Design/Development of solutions	PO9	Individual and team work
PO4	Conduct investigations of complex problems	PO10	Communication
PO5	Modern tool usage	PO11	Project Management and Finance
PO6	The Engineer and Society	PO12	Life long learning

Assessment Pattern

Bloom's Category	Continuous Assessment Tests		End (\%) Semester Examination Marks (\%)
	30	Test 2 (\%)	
Understand	30	30	30
Apply	40	30	40
Analyze		40	
Evaluate			
Create			

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	50	100	3

Continuous Internal Evaluation Pattern:

Attendance
Continuous Assessment Tests (Average of Series Tests $1 \& 2$)
Continuous Assessment Assignment

10 marks

25 marks
15 marks

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks. First series test shall be preferably conducted after completing the first half of the syllabus and the second series test shall be preferably conducted after completing remaining part of the syllabus. There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly completed module), having 3 marks for each question adding up to 15 marks for part A . Students should answer all questions from Part A . Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly completed module), each with 7 marks. Out of the 7 questions, a student should answer any 5.

End Semester Examination Pattern:

There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 full questions from each module of which student should answer any one. Each question can have maximum 2 sub-divisions and carries 14 marks.

Syllabus

Module - 1 (Fundamentals of Logic)

Mathematical logic - Basic connectives and truth table, Statements, Logical Connectives, Tautology, Contradiction. Logical Equivalence - The Laws of Logic, The Principle of duality, Substitution Rules . The implication - The Contrapositive, The Converse, The Inverse.

Logical Implication - Rules of Inference. The use of Quantifiers - Open Statement, Quantifier. Logically Equivalent - Contrapositive, Converse , Inverse , Logical equivalences and implications for quantified statement, Implications, Negation .

Module - 2 (Fundamentals of Counting Theory)

The Rule of Sum - Extension of Sum Rule. The Rule of Product - Extension of Product Rule . Permutations. Combinations. The Binomial Theorem (without proof). Combination with Repetition. The Pigeon hole Principle. The Principle of Inclusion and Exclusion Theorem (Without Proof) - Generalization of the Principle. Derangements.

Module - 3 (Relations and Functions)

Cartesian Product - Binary Relation. Function - domain, range-one to one function, Imagerestriction. Properties of Relations- Reachability Relations, Reflexive Relations, Symmetric Relations, Transitive relations, Anti-symmetric Relations, Partial Order relations, Equivalence Relations, Irreflexive relations.

Partially ordered Set - Hasse Diagram, Maximal-Minimal Element, Least upper bound (lub), Greatest Lower bound(glb) (Topological sorting Algorithm- excluded). Equivalence Relations and Partitions - Equivalence Class.

Lattice - Dual Lattice, Sub lattice, Properties of glb and lub, Properties of Lattice, Special Lattice, Complete Lattice, Bounded Lattice, Completed Lattice, Distributive Lattice.

Module - 4 (Generating Functions and Recurrence Relations)

Generating Function - Definition and Examples , Calculation techniques, Exponential generating function. First order linear recurrence relations with constant coefficients homogeneous, non-homogeneous Solution. Second order linear recurrence relations with constant coefficients, homogeneous, non-homogeneous Solution.

Module - 5 (Algebraic Structures)

Algebraic system-properties- Homomorphism and Isomorphism. Semi group and monoid cyclic monoid, sub semi group and sub monoid, Homomorphism and Isomorphism of Semi group and monoids. Group- Elementary properties, subgroup, symmetric group on three symbols ,The direct product of two groups, Group Homomorphism, Isomorphism of groups, Cyclicgroup. Rightcosets - Leftcosets. Lagrange's Theorem

Text Book

1. Discrete and Combinatorial Mathematics (An Applied Introduction), Ralph P Grimaldi, B
[^0]
Reference Books

1) Kenneth H. Rosen, Discrete Mathematics and Its Applications with Combinatorics and Graph Theory, Seventh Edition, MGH, 2011
2) Trembly J.P and Manohar R, "Discrete Mathematical Structures with Applications to Computer Science", Tata Mc Graw Hill Pub. Co. Ltd., New Delhi, 2003.
3) Bernard Kolman, Robert C. Busby, Sharan Cutler Ross, "Discrete Mathematical Structures", Pearson Education Pvt Ltd., New Delhi, 2003
4) Kenneth H .Rosen, "Discrete Mathematics and its Applications", 5/e, Tata Mc Graw Hill Pub. Co. Ltd, New Delhi 2003
5) Richard Johnsonbaugh, "Discrete Mathematics", 5/e, Pearson Education Asia, NewDelhi, 2002.
6) Joe L Mott, Abraham Kandel, Theodore P Baker,"Discrete Mathematics for Computer Scientists and Mathematicians", 2/e, Prentice-Hall India, 2009.

Course Level Assessment Questions

Course Outcome 1 (CO1):

1. Show that $R \vee M, 7 \mathrm{R} \vee \mathrm{S}, 7 \mathrm{M}, 7 \mathrm{~S}$ cannot exist simultaneously (without using truth table)
2. Represent the following statement in symbolic form "Not every city in Canada is clean".

Course Outcome 2 (CO2):

1. How many possible arrangements are there for the letters in MASSASAUGA in which 4 A's are together?
2. Find the number of integers between 1 and 1000 inclusive, which are not divisible by 5 , 6 or 8
Course Outcome 3 (CO3):
3. If $A=\{1,2,3,4\}$, give an example of a relation R that is reflexive and symmetric but not transitive.
4. Let Z be the set of integers. R is a relation called "Congruence Modulo 3 " defined by R $=\{(\mathrm{x}, \mathrm{y}) / \mathrm{x} \varepsilon \mathrm{Z}, \mathrm{y} \varepsilon \mathrm{Z}, \mathrm{x}-\mathrm{y}$ is divisible by 3$\}$. Show that R is an equivalence relation.

Course Outcome 4 (CO4):

1. Assume $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. Let $\mathrm{P}(\mathrm{A})$ be its power set and ' \leq ' be the subset relation on the power set. Draw the Hasse diagram of $(\mathrm{P}(\mathrm{A}), \leq)$.
2. What is meant by Bounded Lattice ? Give an example.

Course Outcome 5 (CO5):

1. Solve $a_{r}-3 a_{r-1}-4 a_{r-2}=3 r$ using Generating function method; Given $a_{0}=1, a_{1}=2$.
2. Find the generating function for the sequence $1,3,3^{2}, 3^{3} \ldots \ldots$.

Course Outcome 6 (CO6):

1. Prove that the group $\{1,-1, i,-i\}$ is cyclic with generators i and $-i$.
2. State and prove Lagrange's Theorem.

Model Question Paper

QP CODE:

Reg No:

\qquad
Name: \qquad PAGES : 3

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION, MONTH \& YEAR

Course Code: MAT 203

Course Name: Discrete Mathematical Structures

Max.Marks :100
Duration: 3 Hrs

PART A

Answer all Questions. Each question carries 3 Marks

1. Show the following implication without constructing the truth table: $\left(\mathrm{P}^{\wedge} \mathrm{Q}\right)=>\mathrm{P} \rightarrow \mathrm{Q}$
2. Write the negation of the following statement. "If I drive, then I will not walk"
3. What is pigeon hole principle? Explain. If you select any five numbers from 1 to 8 then prove that at least two of them will add up to 9 .
4. In how many ways can the letters of the word ALLAHABAD be arranged ?
5. Show that the divisibility relation ' / ' is a partial ordering on the set Z^{+}.
6. Consider the functions given by $f(x)=2 x+3$ and $g(x)=x^{2}$. Find (g of) and ($f \circ g$).
7. What is meant by exponential generating function? Explain.
8. Provide one example of linear homogeneous recurrence relation. Mention the degree also.
9. What is a monoid ? Explain.
10. Let (A, .) be a group. Show that (ab) $)^{-1}=b^{-1} a^{-1}$

PART B

(Answer any one Question from each Module. Each question carries 14 Marks)

11.

(a) Show that $S \vee R$ is tautologically implied by $(P V Q) \wedge(P \rightarrow R) \wedge(Q \rightarrow S)$
(b) Show that from
(ii) $(\exists \mathrm{x})(\mathrm{F}(\mathrm{x}) \wedge \mathrm{S}(\mathrm{x})) \rightarrow(\mathrm{y})(\mathrm{M}(\mathrm{y}) \rightarrow \mathrm{W}(\mathrm{y}))$.
(iii) $(\exists y)(\mathrm{M}(\mathrm{y}) \wedge\rceil \mathrm{W}(\mathrm{y}))$ the conclusion $(\mathrm{x})(\mathrm{F}(\mathrm{x}) \rightarrow\rceil \mathrm{S}(\mathrm{x}))$ follows.
(8 marks)

OR

12.

(a) Show that $(x)(P(x) \vee Q(x)) \Rightarrow((x) P(x) \vee(\exists x) Q(x))$ using indirect method of proof.
(6 marks)
(b) Discuss indirect method of proof. Show that the following premises are inconsistent
(i) If Jack misses many classes through illness, then he fails high school.
(ii) If Jack fails high school, then he is uneducated.
(iii)If Jack reads a lot of books, then he is not uneducated.
(iv) Jack misses many classes through illness and reads a lot of books.
(8 marks)
13.
(a) Explain binomial theorem. Determine the coefficient of $x^{9} y^{3}$ in the expansion of $(x+y)^{12},(x+2 y)^{12}$ and $(2 x-3 y)^{12}$ using binomial theorem.
(6 marks)
(b) How many 5 digit numbers can be formed from the digits $1,2,3,4,5$ using the digits without repetition?
(i) How many of them are even?
(ii) How many are even and greater than 30,000 ?
(8 marks)

OR

14.

(a) There are 8 guests in a party. Each guest brings a gift and receives another gift in return. No one is allowed to receive the gift they bought. How many ways are there to distribute the gifts?
(6 marks)
(b) Six papers are set in an examination of which two are mathematical. Only one examination will be conducted in a day. In how many different orders ,can the papers be arranged so that
(i) Two mathematical papers are consecutive?
(ii) Two mathematical papers are not consecutive?
15. (a) Let $\mathrm{A}=\{1,2,3,4, \ldots 11,12\}$ and let R be the equivalence relation on $\mathrm{A} \times \mathrm{A}$ defined by $(a, b) R(c, d)$ iff $a+d=b+c$. Prove that R is an equivalence relation and find the equivalence class of $(2,5)$
(8 marks)
(b) What is a chain lattice ? Explain. Also show that every chain is a distributive lattice.
(6 marks)

OR

16.

(a) Suppose $f(x)=x+2, g(x)=x-2$, and $h(x)=3 x$ for $x \in R$, where R is the set of real numbers. Find ($\mathrm{g} \circ \mathrm{f}$), ($\mathrm{f} \circ \mathrm{g}$), ($\mathrm{f} \circ \mathrm{f}$) and $(\mathrm{g} \circ \mathrm{g})$
(8 marks)
(b) Let R and S be two relations on a set A . If R and S are symmetric, Prove that ($\mathrm{R} \cap \mathrm{S}$) is also symmetric.
(6 marks)
17.
(a) Solve the recurrence relation $a_{r}-7 a_{r-1}+10 a_{r-2}=0$ for $r \geq 2$; Given $a_{0}=0 ; a_{1}=41$ using generating functions
(8 marks)
(b) Solve the recurrence relation $\mathrm{a}_{\mathrm{r}}-4 \mathrm{a}_{\mathrm{r}-1}+4 \mathrm{a}_{\mathrm{r}-2}=(\mathrm{r}+1)^{2}$ using generating function.
(6 marks)

OR

18.

(a) Solve $a_{n}-3 a_{n-1}+2 ; a_{0}=1 n \geq 1$, using generating functions.
(8 marks)
(b) Use generating function to solve the following recurrence relation $a_{n}=2 a_{n-1}+2^{n}$; with $\mathrm{a}_{0}=2$.
(6 marks)
19.
(a) Prove that the set ' Q ' of rational numbers other than 1 forms an abelian group with respect to the operation ' *' defined by $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}-\mathrm{ab}$.
(b) Show that the direct product of two group is a group.
(8 Marks)
(6 Marks)

OR

20.

(a) Show that the subgroup of a cyclic group is cyclic.
(8 Marks)
(b) Let $\left(\mathrm{A},{ }^{*}\right)$ be a group. Show that $\left(\mathrm{A},{ }^{*}\right)$ is an abelian group if and only if $\mathrm{a}^{2 *} \mathrm{~b}^{2}=\left(\mathrm{a}^{*} \mathrm{~b}\right)^{2}$ for all ' a ' and ' b ' in A
(6 Marks)

TEACHING PLAN

No	Contents	No of Lecture Hrs
Module - 1 (Fundamentals of Logic) (9 hrs)		
1.1	Mathematical logic, Basic Connectives and Truth Table	1
1.2	Statements, Logical Connectives, Tautology, Contradiction	1
1.3	Logical Equivalence, The Laws of Logic	1
1.4	The Principle of duality, Substitution Rules	1
1.5	The implication, The Contrapositive, the Converse, the Inverse	1
1.6	Logical Implication, Rules of Inference, Logical Implication	1
1.7	The use of Quantifiers, Open Statement, Quantifier, Negation	1
1.8	Logically Equivalent, Contrapositive, The Converse, The Inverse	1
1.9	Logical Implications	1
Module - 2 (Fundamentals of Counting Theory) (9 hrs)		
2.1	The Pigeon-hole Principle	1
2.2	The Rule of Sum	1
2.3	Extension of Sum Rule	1
2.4	The Rule of Product	1
2.5	Extension of Product Rule, Permutations	1
2.6	Combinations, Combination with repetition	1
2.7	The Binomial Theorem	1
2.8	The Principle of Inclusion and Exclusion Theorem (Without Proof) Generalization of the Principle	1
2.9	Derangements	1
Module - 3 (Relations and Functions) (9 hrs)		
3.1	Cartesian Product, Binary Relation, Function, Domain, Range , One to One Function Image - Restriction	1
3.2	Properties, Reachability Relations, Reflexive Relations,Symmetric Relations,Transitive relations, Antisymmetric Relations.	1

3.3	Partial Order relations	1
3.4	Equivalence Relation, Irreflexive Relations.	1
3.5	Partially ordered Set, Hasse Diagram.	1
3.6	Maximal-Minimal Element, Least Upper bound, Greatest Lower Bound	1
3.7	Equivalence Relations and Partitions, Equivalence Class	1
3.8	Lattice- Dual Lattice,sub lattice, Properties of glb and lub	1
3.9	Properties of Lattice , Special Lattice , Complete Lattice, Bounded Lattice, Completed Lattice, Distributive Lattice	1
Module - 4 (Generating Functions and Recurrence Relations) (9 hrs)		
4.1	Generating Function, Definition and Examples	1
4.2	Exponential Generating Function.	1
4.3	First Order Linear Recurrence Relations with Constant Coefficients (Lecture I)	1
4.4	First Order Linear Recurrence Relations with Constant Coefficients (Lecture II)	1
4.5	Homogeneous Solution	1
4.6	Non homogeneous Solution	1
4.7	Second order linear recurrence relations with constant coefficients	1
4.8	Homogeneous Solution	1
4.9	Non homogeneous Solution	1
Module - 5 (Algebraic Structures)(9 hrs)		
5.1	Algebraic System-Properties, Homomorphism and Isomorphism	1
5.2	Semi group, Monoid, Cyclic monoid	1

5.3	Sub semigroup and sub monoid	1
5.4	Homomorphism and Isomorphism of Semigroup, Monoids and Groups	1
5.5	Elementary Properties, Subgroup, Symmetric group on three symbols	1
5.6	The direct Product of two Groups	1
5.7	Group Homomorphism, Isomorphism, Cyclic group	1
5.8	Right coset, Left coset	1
5.9	Lagrange's Theorem	1

CST 201	DATA STRUCTURES	CATEGORY	L	T	P	CREDIT
		PCC	3	1	0	4
YEAR OF						
				2019		

Preamble: This course aims at moulding the learner to understand the various data structures, their organization and operations. The course helps the learners to assess the applicability of different data structures and associated algorithms for solving real world problem which requires to compare and select appropriate data structures to solve the problem efficiently. This course introduces abstract concepts for data organization and manipulation using data structures such as stacks, queues, linked lists, binary trees, heaps and graphs for designing their own data structures to solve practical application problems in various fields of Computer Science.

Prerequisite: Topics covered under the course Programming in C (EST 102)

CO1	Design an algorithm for a computational task and calculate the time/space complexities of that algorithm (Cognitive Knowledge Level: Apply)
$\mathbf{C O 2}$	Identify the suitable data structure (array or linked list) to represent a data item required to be processed to solve a given computational problem and write an algorithm to find the solution of the computational problem (Cognitive Knowledge Level: Apply)
$\mathbf{C O 3}$	Write an algorithm to find the solution of a computational problem by selecting an appropriate data structure (binary tree/graph) to represent a data item to be processed (Cognitive Knowledge Level: Apply)
$\mathbf{C O 4}$	Store a given dataset using an appropriate Hash Function to enable efficient access of data in the given set (Cognitive Knowledge Level: Apply)
$\mathbf{C O 5}$	Select appropriate sorting algorithms to be used in specific circumstances (Cognitive Knowledge Level: Analyze)
$\mathbf{C O 6}$	Design and implement Data Structures for solving real world problems efficiently (Cognitive Knowledge Level: Apply)

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												

Abstract POs defined by National Board of Accreditation			
PO\#	Broad PO	PO\#	Broad PO
PO1	Engineering Knowledge	PO7	Environment and Sustainability
PO2	Problem Analysis	PO8	Ethics
PO3	Design/Development of solutions	PO9	Individual and team work
PO4	Conduct investigations of complex problems	PO10	Communication
PO5	Modern tool usage	PO11	Project Management and Finance
PO6	The Engineer and Society	PO12	Life long learning

Assessment Pattern

Bloom's Category	Continuous Assessment Tests		End Semester Examination Marks
	Test1 (Percentage)	Test2 (Percentage)	
Remember	30	30	30
Understand	30	30	30
Apply	40	40	40

Analyse			
Evaluate			
Create			

Mark Distribution

Total Marks \square	CIE Marks	ESE Marks	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance	$: 10$ marks
Continuous Assessment Tests	$: 25$ marks
Continuous Assessment Assignment	$: 15$ marks

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks

First Internal Examination shall be preferably conducted after completing the first half of the syllabus and the Second Internal Examination shall be preferably conducted after completing remaining part of the syllabus.

There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly covered module), having 3 marks for each question adding up to 15 marks for part A. Students should answer all questions from Part A. Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly covered module), each with 7 marks. Out of the 7 questions in Part B, a student should answer any 5.

End Semester Examination Pattern:

There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have maximum 2 sub-divisions and carries 14 marks.

SYLLABUS

Module 1

Basic Concepts of Data Structures

System Life Cycle, Algorithms, Performance Analysis, Space Complexity, Time Complexity, Asymptotic Notation, Complexity Calculation of Simple Algorithms

Module 2

Arrays and Searching

Polynomial representation using Arrays, Sparse matrix, Stacks, Queues-Circular Queues, Priority Queues, Double Ended Queues, Evaluation of Expressions
Linear Search and Binary Search

Module 3

Linked List and Memory Management

Self Referential Structures, Dynamic Memory Allocation, Singly Linked List-Operations on Linked List. Doubly Linked List, Circular Linked List, Stacks and Queues using Linked List, Polynomial representation using Linked List
Memory allocation and de-allocation-First-fit, Best-fit and Worst-fit allocation schemes

Module 4

Trees and Graphs

Trees, Binary Trees-Tree Operations, Binary Tree Representation, Tree Traversals, Binary Search Trees- Binary Search Tree Operations
Graphs, Representation of Graphs, Depth First Search and Breadth First Search on Graphs, Applications of Graphs

Module 5

Sorting and Hashing

Sorting Techniques - Selection Sort, Insertion Sort, Quick Sort, Merge Sort and Heap Sort
Hashing- Hashing Techniques, Collision Resolution, Overflow handling, Hashing functions Mid square, Division, Folding, Digit Analysis

Text Book

1. Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed, Universities Press, Fundamentals of Data Structures in C

Reference Books

1. Samanta D., Classic Data Structures, Prentice Hall India.
2. Richard F. Gilberg, Behrouz A. Forouzan, Data Structures: A Pseudocode Approach with C, 2/e, Cengage Learning.
3. Aho A. V., J. E. Hopcroft and J. D. Ullman, Data Structures and Algorithms, Pearson Publication.
4. Tremblay J. P. and P. G. Sorenson, Introduction to Data Structures with Applications, Tata McGraw Hill.
5. Peter Brass, Advanced Data Structures, Cambridge University Press.
6. Lipschuts S., Theory and Problems of Data Structures, Schaum's Series.
7. Wirth N., Algorithms + Data Structures = Programs, Prentice Hall.
8. Hugges J. K. and J. I. Michtm, A Structured Approach to Programming, PHI.
9. Martin Barrett, Clifford Wagner, C And Unix: Tools For Software Design, John Wiley.

Sample Course Level Assessment Questions

Course Outcome1(CO1): Write an algorithm for matrix multiplication and calculate its time complexity.

Course Outcome 2(CO2): How a linked list can be used to represent the polynomial $5 x^{4} y^{6}+24 x^{3} y^{4}-17 x^{2} y^{3}+15 x y^{2}+45$. Write an algorithm to add two Bivariate polynomials represented using linked list.

Course Outcome 3(CO3): Create a Binary search Tree with node representing the following sequence $14,15,4,18,9,16,20,17,3,7,5,2$ and perform inorder, preorder and postorder traversals on the above tree and print the output.

Course Outcome 4(CO4): The size of a hash table is 7. The index of the hash table varies from 0 to 6 . Consider the keys $89,18,49,58,25$ in the order. Show how the keys are stored in the hash table using Linear probing.

Course Outcome 5(CO5): In what circumstances does Quick Sort perform over Merge sort.

Course Outcome 6(CO6): Design a reservation system for railways that include waiting list. If the reservation is full "Display reservation full" and put the passenger in in waiting list and give a waiting list number. If a passenger cancels the ticket, then the seat should be automatically allocated to the first passenger in the waiting list.

Model Question Paper

QP CODE:
Reg No: \qquad
Name: \qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, MONTH \& YEAR

Course Code: CST 201

Course Name: DATA STRUCTURES

Max.Marks:100

PART A

Answer all Questions. Each question carries 3 Marks

1. Calculate the frequency count of the statement $x=x+1$; in the following code segment

$$
\begin{aligned}
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++) \\
& \text { for }\left(\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}^{*}=2\right) \\
& \qquad x=x+1 ;
\end{aligned}
$$

2. What is the relevance of verification in System Life Cycle?
3. Write an algorithm to insert a new element in a particular position of an array.
4. Convert the expression $\left((\mathrm{A} /(\mathrm{B}-\mathrm{D}+\mathrm{E}))^{*}(\mathrm{~F}-\mathrm{G}) * \mathrm{H}\right)$ to postfix form. Show each step in the conversion including the stack contents
5. Write an algorithm to count the number of occurrences of a character in a linked list (each node contains only one character)
6. Write an algorithm for best-fit method of memory allocation
7. Draw the binary tree whose sequential representation is given below

8. Find the Depth First Search of the following Graph

9. Write an algorithm to arrange n numbers in nonincreasing order.
10. Let the size of a hash table is 10 . The index of the hash table varies from 0 to 9 . Assume the keys $73,54,15,48,89,66,37,18,41,22,62$ are mapped using modulo operator. Show how the keys are distributed using chaining method.

Part B

Answer any one Question from each module. Each question carries 14 Marks

11. a) Explain the System Life Cycle in detail
b) How the performance of an algorithm is evaluated?

OR

12. a) Write algorithms for Linear Search and Binary Search and Compare their time complexities
b) Between $O(n \operatorname{logn})$ and $O(\operatorname{logn})$ which one is better and why?
13. a) Write algorithms to insert and delete elements from a double ended queue.

Demonstrate with examples
b) Compare and contrast Circular Queue with a Normal Queue

OR

14. a) Write an algorithm to insert and delete elements from a Priority Queue
b) Discuss an algorithm to convert an infix expression to a prefix expression
15. a) Write an algorithm to multiply two polynomials represented using linked list
b) How doubly linked list can be used to find palindromes?

OR

16. a) How is memory compaction (de-allocation) done in memory management?
b) Discuss the advantages and disadvantages of First-fit, Best-fit and Worst-fit allocation schemes
17. a) List the properties of Binary Search Tree. Write an algorithm to search an element
from a Binary Search Tree
b) Write an iterative algorithm for in-order traversal of a Binary Tree

OR

18. a) Give algorithms for DFS and BFS of a graph and explain with examples
b) How graphs can be represented in a Computer?
19. a) Write algorithms for Merge sort and Quick Sort.
b) Illustrate the working of Quick sort on the following input $38,8,0,28,45,-12,89,66$, 42

OR

20. a) With examples discuss the different hash functions used for hashing
b) Apply the hash function $\mathrm{h}(\mathrm{x})=\mathrm{x} \bmod 7$ for linear probing on the data 2341, 4234, 2839, 430, 22, 397, 3920 and show the resulting hash table

Teaching Plan				
Module 1 :Basic Concepts of Data Structures		$(5$ hours)		
1.1	System Life Cycle,	1 hour		
1.2	Algorithms , Performance Analysis	1 hour		
1.3	Space Complexity, Time Complexity	1 hour		
1.4	Asymptotic Notation (Big O Notation)	1 hour		
1.5	Complexity Calculation of Simple Algorithms	1 hour		
Module 2 :Arrays and Searching				$(10$ hours)
2.1	Polynomial representation using Arrays	1 hour		
2.2	Sparse matrix (Lecture 1)	1 hour		
2.3	Sparse matrix (Lecture 2)	1 hour		

2.4	Stacks	1 hour
2.5	Queues, Circular Queues	1 hour
2.6	Priority Queues,	1 hour
2.7	Double Ended Queues,	1 hour
2.8	Conversion and Evaluation of Expressions (Lecture 1)	1 hour
2.9	Conversion and Evaluation of Expressions (Lecture 2)	1 hour
2.10	Linear Search and Binary Search	1 hour
Module 3 : Linked List and Memory Management		(12 hours)
3.1	Self Referential Structures	1 hour
3.2	Dynamic Memory Allocation	1 hour
3.3	Singly Linked List-Operations on Linked List,	1 hour
3.4	Doubly Linked List	1 hour
3.5	Circular Linked List	1 hour
3.6	Stacks using Linked List	1 hour
3.7	Queues using Linked List	1 hour
3.8	Polynomial representation using Linked List (Lecture 1)	1 hour
3.9	Polynomial representation using Linked List (Lecture2)	1 hour
3.10	Memory de-allocation	1 hour
3.11	Memory allocation-First-fit	1 hour
3.12	Best-fit and Worst-fit allocation schemes	1 hour
Module 4 :Trees and Graphs		(8 hours)
4.1	Trees, Binary Trees 201	1 hour
4.2	Tree Operations, Binary Tree Representation,	1 hour
4.3	Tree Traversals	1 hour
4.4	Binary Search Trees	1 hour
4.5	Binary Search Tree Operations	1 hour
4.6	Graphs, Representation of Graphs	1 hour

4.7	Depth First Search and Breadth First Search on Graphs	1 hour
4.8	Applications of Graphs	1hour
Module 5 : Sorting and Hashing		$(10$ hours $)$
5.1	Sorting Techniques - Selection Sort	1 hour
5.2	Insertion Sort	1 hour
5.3	Quick Sort	1 hour
5.4	Merge Sort	1 hour
5.5	Heap Sort	1 hour
5.6	Hashing- Hashing Techniques	1 hour
5.7	Collision Resolution	1 hour
5.8	Overflow handling	1 hour
5.9	Hashing functions - Mid square and Division methods	1 hour
5.10	Folding and Digit Analysis methods	1 hour

CST 203	Logic System Design	Category	L	T	P	Credit	Year of Introduction
		3	1	0	4	2019	

Preamble: The objective of the course is to familiarize learners with the basic concepts of Boolean algebra and digital systems. This course covers the design of simple combinational and sequential logic circuits, representation and arithmetic algorithms for Binary, BCD (Binary Coded Decimal) and Floating point numbers which in turn are helpful in understanding organization \& design of a computer system and understanding how patterns of ones and zeros can be used to store information on computers, including multimedia data.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

CO\#	CO
CO1	Illustrate decimal, binary, octal, hexadecimal and BCD number systems, perform conversions among them and do the operations - complementation, addition, subtraction, multiplication and division on binary numbers (Cognitive Knowledge level: Understand)
CO2	Simplify a given Boolean Function and design a combinational circuit to implement the simplified function using Digital Logic Gates (Cognitive Knowledge level: Apply)
CO3	Design combinational circuits - Adders, Code Convertors, Decoders, Magnitude Comparators, Parity Generator/Checker and design the Programmable Logic Devices - ROM and PLA. (Cognitive Knowledge level: Apply)
$\mathbf{C O 4}$	Design sequential circuits - Registers, Counters and Shift Registers. (Cognitive Knowledge level: Apply)
CO5	Use algorithms to perform addition and subtraction on binary, BCD and floating point numbers (Cognitive Knowledge level: Understand)

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
C03												
CO4												
CO5												

Abstract POs defined by National Board of Accreditation			
PO\#	Broad PO	PO\#	Broad PO
PO1	Engineering Knowledge	PO7	Environment and Sustainability
PO2	Problem Analysis	PO8	Ethics
PO3	Design/Development of solutions	PO9	Individual and team work
PO4	Conduct investigations of complex problems	PO10	Communication
PO5	Modern tool usage	PO11	Project Management and Finance
PO6	The Engineer and Society	PO12	Life long learning

Assessment Pattern:

Bloom's Category	Test 1 (\%)	Test 2 (\%)	End Semester Examination Marks (\%)
Remember	20	20	20
Understand	35	1435	35
Apply	45	45	45
Analyse			
Evaluate			
Create			

Mark Distribution:

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	50	100	3

Continuous Internal Evaluation Pattern:

$\begin{array}{lr}\text { Attendance } & : 10 \text { marks } \\ \text { Continuous Assessment Test } & : 25 \text { marks } \\ \text { Continuous Assessment Assignment }: 15 \text { marks }\end{array}$

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks. First series test shall be preferably conducted after completing the first half of the syllabus and the second series test shall be preferably conducted after completing remaining part of the syllabus. There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly completed module), having 3 marks for each question adding up to 15 marks for part A. Students should answer all questions from Part A. Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly completed module), each with 7 marks. Out of the 7 questions, a student should answer any 5 .

End Semester Examination Pattern:

There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have maximum 2 sub-divisions and carries 14 marks.

SYLLABUS
 Module I

Number systems, Operations \& Codes

Decimal, Binary, Octal and Hexadecimal Number Systems- Number Base Conversions. Addition, Subtraction, Multiplication and Division of binary numbers. Representation of negative numbers- Complements, Subtraction with complements. Addition and subtraction of BCD, Octal and Hexadecimal numbers. Binary codes- Decimal codes, Error detection codes, Reflected code, Character coding schemes - ASCII, EBCDIC.

Module II

Boolean Algebra

Postulates of Boolean Algebra. Basic theorems and Properties of Boolean Algebra. Boolean Functions - Canonical and Standard forms. Simplification of Boolean Functions- Using Karnaugh- Map Method (upto five variables), Don't care conditions, Product of sums
simplification, Tabulation Method. Digital Logic Gates- Implementation of Boolean functions using basic and universal gates.

Module III

Combinational Logic Circuits

Design Procedure \& Implementation of combinational logic circuits- Binary adders and subtractors, Binary Parallel adder, Carry look ahead adder, BCD adder, Code converter, Magnitude comparator, Decoder, Demultiplexer, Encoder, Multiplexer, Parity generator/ Checker.

Module IV

Sequential logic circuits:

Flip-flops- SR, JK, T and D. Triggering of flip-flops- Master slave flip- flops, Edge- triggered flip- flops. Excitation table and characteristic equation. Registers- register with parallel load. Counter design: Asynchronous counters- Binary and BCD counters, timing sequences and state diagrams. Synchronous counters- Binary Up- down counter, BCD counter.

Module V

Shift registers

Shift registers - Serial In Serial Out, Serial In Parallel Out, Bidirectional Shift Register with Parallel load. Ring counter. Johnson counter- timing sequences and state diagrams.

Arithmetic algorithms

Algorithms for addition and subtraction of binary numbers in signed magnitude and 2's complement representations. Algorithm for addition and subtraction of BCD numbers. Representation of floating point numbers, Algorithm for addition and subtraction of floating point numbers.

Programmable Logic devices

ROM. Programmable Logic Array(PLA)- Implementation of simple circuits using PLA.

Text Books:

1. M. Morris Mano, Digital Logic \& Computer Design, 4/e, Pearson Education, 2013
2. Thomas L Floyd, Digital Fundamentals, 10/e, Pearson Education, 2009.
3. M. Morris Mano, Computer System Architecture, 3/e, Pearson Education, 2007.

Reference Books:

1. M. Morris Mano, Michael D Ciletti, Digital Design With An Introduction to the Verilog HDL, 5/e, Pearson Education, 2013.
2. Donald D Givone, Digital Principles and Design, Tata McGraw Hill, 2003

Sample Course Level Assessment Questions

Course Outcome1(CO1): Perform the following number base conversions:
a) $(250.55)_{10}$ to Hexadecimal
b) $(357)_{8}$ to Decimal

Course Outcome 2(CO2): Given a Boolean function F and don't care conditions D, using Karnaugh map obtain the simplified expression in (i) SOP and (ii) POS:

$$
\begin{aligned}
& F(A, B, C, D)=A^{\prime} B^{\prime} D^{\prime}+A^{\prime} C D+A^{\prime} B C \\
& D(A, B, C, D)=A^{\prime} B C^{\prime} D+A C D+A B^{\prime} D
\end{aligned}
$$

Course Outcome 3(CO3): Design a BCD to Excess-3 Code Convertor.
Course Outcome 4(CO4): Design a 4- bit binary ripple counter.
Course Outcome 5(CO5): Demonstrate floating-point addition algorithm.

Reg No: \qquad
Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, MONTH \& YEAR

Course Code: CST 203

Course name : LOGIC SYSTEM DESIGN

Max Marks: 100
Duration: 3 Hours
PART-A
(Answer All Questions. Each question carries 3 marks)

1. Represent the decimal numbers $(459)_{10}$ and $(859)_{10}$ in hexadecimal and perform addition of these hexadecimal numbers.
2. Subtract $(1101)_{2}$ from $(11010)_{2}$ using: i) $2^{\prime} s$ complement and ii) $1^{\prime} s$ complement arithmetic.
3. Find the dual and complement of the boolean function $F=A B^{\prime}+B\left(A+B^{\prime}\right)$.
4. Using K-map, reduce the expression: $A B+A B C+A B C+B C$.
5. Design a half subtractor with NAND gates only.
6. Design a combinational circuit that multiplies an input decimal digit by 5 represented in BCD. The output is also in BCD. Show that the outputs can be obtained from the input lines without using any logic gates.
7. Differentiate between ripple counter and synchronous counter.
8. Construct D flip- flop using NAND gates. Also give its truth table.
9. Explain how a shift register is used for serial data transfer?
10. Write short notes on ROM.

PART-B

(Answer any one full question from each module)
11. (a) Perform the following operations using 2's complement arithmetic:
(i) $88_{10}+(-37)_{10}$
(ii) $(-20)_{10}+(-12)_{10}$
(b) Perform the following base conversions: (i) $(101011.11)_{2}$ to octal (ii) $(3 F 9 B)_{16}$ to binary (iii) $(121)_{10}$ to binary (iv) $(3077)_{8}$ to binary

OR

12. (a) Find the 12 bit $2^{\prime} s$ complement representation of the following decimal numbers.
(i) -97
(ii) -224
(iii) - 197.5
(b) Perform the following operations
(i) $(520)_{8}+(488)_{8}$
(ii) $(520)_{16}-(488)_{16}$
13. (a) Prove that (i) $A B+A(B+C)+B(B+C)=B+A C$

$$
\begin{equation*}
\text { (ii) } A B+A(B+C)+B(B+D)=A \tag{4}
\end{equation*}
$$

(b) Using K-map, simplify the Boolean function F in sum of products form, using the don't care conditions d :

$$
\begin{gather*}
F(w, x, y, z)=w^{\prime}\left(x^{\prime} y+x^{\prime} y^{\prime}+x y z\right)+x^{\prime} z^{\prime}(y+w) \\
d(w, x, y, z)=w^{\prime} x\left(y^{\prime} z+y z^{\prime}\right)+w y z \\
\text { OR } \tag{8}
\end{gather*}
$$

14. (a) Simplify the following expressions using Karnaugh- map method.
(i) $F=\Sigma(0,2,4,6,9,11,13,15,17,21,25,27,29,31)$
(ii) $F=\Pi(0,2,5,7)$
(b) Convert the following to the other canonical form:
(i) $F(x, y, z, a)=\sum(1,3,7)$
(ii) $F(x, y, z)=\Pi(0,3,6,7)$
(iii) $F(A, B, C, D)=\Pi(0,1,2,3,4,6,12)$
15. (a) Implement Full adder circuit using NAND gate only.
(b) Design a code converter for converting BCD to Excess 3 code

OR

16. (a) With a neat diagram explain 4-bit carry look-ahead adder.
(b) Design a Gray to binary code converter using a 4×1 MUX. Draw the circuit diagram and explain.
17. (a) Design a counter that count the states $0,3,5,6,0 \ldots$ using T flip- flops.
(b) Write the characteristics equation, excitation table of JK, T and D flipflop.

OR

18. (a) Explain race around condition and how it can be avoided.
(b) Design a synchronous Binary Up-Down Counter.
19. (a) With a neat diagram explain universal shift register.
(b) Explain Johnson Counter with timing diagram.

OR

20. (a) Write algorithm for floating point addition and subtraction.
(b) Implement the functions $Y_{1}=A B^{\prime} C^{\prime}+A B^{\prime} C+A B C$ and $Y_{2}=B C+A C$ using minimum gates Programmable Logic Array.

Teaching Plan

Module 1: Number systems, Operations \& Codes (No algorithms)		(7 hours)
$\mathbf{1 . 1}$	Number Systems: Decimal, Binary, Octal and Hexadecimal number systems, Number Base Conversions.	$\mathbf{1}$ hour
$\mathbf{1 . 2}$	Binary Arithmetic: Addition, Subtraction, Multiplication \& Division of Binary Numbers. (Lecture 1)	$\mathbf{1}$ hour
$\mathbf{1 . 3}$	Addition, Subtraction, Multiplication \& Division of Binary Numbers. (Lecture $2)$	$\mathbf{1}$ hour
$\mathbf{1 . 4}$	Representation of Negative Numbers- Complements, subtraction with complements.	$\mathbf{1}$ hour
$\mathbf{1 . 5}$	BCD Arithmetic: Addition and Subtraction of BCD Numbers	$\mathbf{1}$ hour
$\mathbf{1 . 6}$	Octal and Hexadecimal Arithmetic: Addition \& Subtraction of Octal and Hexadecimal Numbers.	$\mathbf{1}$ hour

1.7	Binary Codes: Decimal Codes, Error detection codes, Reflected code, Character Coding Schemes-ASCII, EBCDIC	1 hour
Module 2: Boolean Algebra		$\begin{array}{\|c\|} \hline(9 \\ \text { hours }) \\ \hline \end{array}$
2.1	Introduction to Boolean Algebra: Postulates of Boolean Algebra	1 hour
2.2	Basic theorems and Properties of Boolean Algebra	1 hour
2.3	Boolean Functions: Canonical and Standard Forms H $^{\text {a }}$	1 hour
2.4	Simplification of Boolean Functions: Karnaugh -Map Method (upto five variables), Don't care conditions (Lecture 1)	1 hour
2.5	Simplification of Boolean Functions: Karnaugh -Map Method (upto five variables), Don't care conditions (Lecture 2)	1 hour
2.6	Product of sums simplification	1 hour
2.7	Tabulation method	1 hour
2.8	Digital Logic Gates: AND, OR, NOT, NAND, NOR, XOR, XNOR, Implementation of Boolean functions using basic and universal gates. (Lecture 1)	1 hour
2.9	Digital Logic Gates: AND, OR, NOT, NAND, NOR, XOR, XNOR, Implementation of Boolean functions using basic and universal gates. (Lecture 2)	1 hour
Module 3: Combinational Logic Circuits		$\begin{gathered} (9 \\ \text { hours) } \end{gathered}$
3.1	Design Procedure \& Implementation of Combinational Circuits	1 hour
3.2	Binary Adders: Implementation of Half Adder, Full Adder	1 hour
3.3	Binary Subtractors: Implementation of Half Subtractor, Full Subtractor	1 hour
3.4	Implementation of Binary Parallel Adder ,Carry look ahead Adder, BCD Adder (Lecture 1)	1 hour
3.5	Implementation of Binary Parallel Adder ,Carry look ahead Adder, BCD Adder (Lecture 2)	1 hour

$\mathbf{3 . 6}$	Implementation of Various Combinational Circuits: Code Converters, Magnitude Comparator	$\mathbf{1}$ hour
$\mathbf{3 . 7}$	Implementation of Decoder, Demultiplexer	$\mathbf{1}$ hour
$\mathbf{3 . 8}$	Implementation of Encoder, Multiplexer	$\mathbf{1}$ hour
$\mathbf{3 . 9}$	Implementation of Parity Generator/Checker	$\mathbf{1}$ hour
Module 4: Sequential logic circuits:	$\mathbf{(9}$	
$\mathbf{4 . 1}$	Flip flops: SR, JK, T and D flip- flops (Lecture 1)	
$\mathbf{4 . 2}$	SR, JK, T and D flip- flops (Lecture 2)	$\mathbf{1}$ hour
$\mathbf{4 . 3}$	Triggering of flip-flops- Master slave flip- flop, Edge- triggered flip-flops (Lecture 1)	$\mathbf{1}$ hour
4.4	Triggering of flip-flops- Master slave flip- flop, Edge- triggered flip-flops (Lecture 2)	$\mathbf{1}$ hour
$\mathbf{4 . 5}$	Excitation table and characteristic equations of flip- flops	$\mathbf{1}$ hour
$\mathbf{4 . 6}$	Registers- Register with parallel load	$\mathbf{1}$ hour
$\mathbf{4 . 7}$	Counter Design: Asynchronous counters- Binary and BCD counters- timing sequences and state diagrams. (Lecture 1)	$\mathbf{1}$ hour
$\mathbf{4 . 8}$	Asynchronous counters- Binary and BCD counters- timing sequences and state diagrams. (Lecture 2)	$\mathbf{1}$ hour
$\mathbf{4 . 9}$	Synchronous counters- Binary Up- down counter, BCD counter	$\mathbf{1}$ hour
$\mathbf{M o d u l e ~ 5 : ~ S h i f t ~ r e g i s t e r s , ~ A r i t h m e t i c ~ a l g o r i t h m s ~ \& ~ P L D ' s ~}$	$\mathbf{1}$ hours)	
$\mathbf{5 . 1}$	Shift Registers - Serial In Serial Out, Serial In Parallel Out.	
$\mathbf{5 . 2}$	Bidirectional Shift Register with Parallel load	

$\mathbf{5 . 3}$	Shift register counters - Ring Counter, Johnson Counter- timing sequences and state diagrams	$\mathbf{1}$ hour
$\mathbf{5 . 4}$	Arithmetic Algorithms: Algorithm for addition and subtraction of binary numbers in Signed magnitude and 2's complement representations (Lecture 1)	$\mathbf{1}$ hour
$\mathbf{5 . 5}$	Algorithm for addition and subtraction of binary numbers in Signed magnitude and 2's complement representations (Lecture 2)	$\mathbf{1}$ hour
$\mathbf{5 . 6}$	Algorithm for addition and subtraction of BCD numbers	$\mathbf{1}$ hour
$\mathbf{5 . 7}$	Representation of floating point numbers (IEEE Standard representations).	$\mathbf{1}$ hour
$\mathbf{5 . 8}$	Algorithms for floating point addition and subtraction	$\mathbf{1}$ hour
$\mathbf{5 . 9}$	Programmable Logic devices - ROM	$\mathbf{1}$ hour
$\mathbf{5 . 1 0}$	PLA, Implementation of simple circuits using PLA(Lecture 1)	$\mathbf{1}$ hour
$\mathbf{5 . 1 1}$	PLA, Implementation of simple circuits using PLA(Lecture 2)	$\mathbf{1}$ hour

CST 205	OBJECT ORIENTED PROGRAMMING USING JAVA	CATEGORY	L	T	P	CREDIT
	YEAR OF					
INTRODUCTION						

Preamble: The purpose of this course is to enable learners to solve problems by breaking it down to object level while designing software and to implement it using Java. This course covers Object Oriented Principles, Object Oriented Programming in Java, Inheritance, Exception handling, Event handling, multithreaded programming and working with window-based graphics. This course helps the learners to develop Desktop GUI Applications, Mobile applications, Enterprise Applications, Scientific Applications and Web based Applications.

Prerequisite: Topics covered under the course PROGRAMMING IN C (EST 102)
Course Outcomes: After the completion of the course the student will be able to

CO1	Write Java programs using the object oriented concepts - classes, objects, constructors, data hiding, inheritance and polymorphism (Cognitive Knowledge Level: Apply)
$\mathbf{C O 2}$	Utilise datatypes, operators, control statements, built in packages \& interfaces, Input/ Output Streams and Files in Java to develop programs (Cognitive Knowledge Level: Apply)
$\mathbf{C O 3}$	Illustrate how robust programs can be written in Java using exception handling mechanism (Cognitive Knowledge Level: Understand)
$\mathbf{C O 4}$	Write application programs in Java using multithreading and database connectivity (Cognitive Knowledge Level: Apply)
$\mathbf{C O 5}$	Write Graphical User Interface based application programs by utilising event handling features and Swing in Java (Cognitive Knowledge Level: Apply)

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012
CO1												
CO2												
CO3												
CO4												
CO5												

Abstract POs defined by National Board of Accreditation			
PO\#	Broad PO	PO\#	Broad PO
PO1	Engineering Knowledge	PO7	Environment and Sustainability
PO2	Problem Analysis	PO8	Ethics
PO3	Design/Development of solutions	PO9	Individual and team work
PO4	Conduct investigations of complex problems	PO10	Communication
PO5	Modern tool usage	PO11	Project Management and Finance
PO6	The Engineer and Society	PO12	Life long learning

Assessment Pattern

Bloom's Category	Continuous Assessment Tests		End Semester Examination Marks (\%)
	Test1 (Marks \%)	Test2 (Marks \%)	
Remember	30	30	30
Understand	30	30	30
Apply	40	40	40
Analyse			
Evaluate			
Create			

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:
$\begin{array}{ll}\text { Attendance } & : 10 \text { marks } \\ \text { Continuous Assessment Tests } & : 25 \text { marks } \\ \text { Continuous Assessment Assignment }: 15 \text { marks }\end{array}$

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks

First series test shall be preferably conducted after completing the first half of the syllabus and the second series test shall be preferably conducted after completing remaining part of the syllabus.

There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly covered module), having 3 marks for each question adding up to 15 marks for part A. Students should answer all questions from Part A. Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly covered module), each with 7 marks. Out of the 7 questions in Part B, a student should answer any 5 .

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

SYLLABUS

Object Oriented Programming Using Java

Module 1

Introduction:

Approaches to Software Design - Functional Oriented Design, Object Oriented Design, Case Study of Automated Fire Alarm System.

Object Modeling Using Unified Modeling Language (UML) - Basic Object Oriented concepts, UML diagrams, Use case model, Class diagram, Interaction diagram, Activity diagram, State chart diagram.

Introduction to Java - Java programming Environment and Runtime Environment, Development Platforms -Standard, Enterprise. Java Virtual Machine (JVM), Java compiler, Bytecode, Java applet, Java Buzzwords, Java program structure, Comments, Garbage Collection, Lexical Issues.

Module 2

Core Java Fundamentals:

Primitive Data types - Integers, Floating Point Types, Characters, Boolean. Literals, Type Conversion and Casting, Variables, Arrays, Strings, Vector class.

Operators - Arithmetic Operators, Bitwise Operators, Relational Operators, Boolean Logical Operators, Assignment Operator, Conditional (Ternary) Operator, Operator Precedence.

Control Statements - Selection Statements, Iteration Statements and Jump Statements.
Object Oriented Programming in Java - Class Fundamentals, Declaring Objects, Object Reference, Introduction to Methods, Constructors, this Keyword, Method Overloading, Using Objects as Parameters, Returning Objects, Recursion, Access Control, Static Members, Final Variables, Inner Classes, Command Line Arguments, Variable Length Arguments.

Inheritance - Super Class, Sub Class, The Keyword super, protected Members, Calling Order of Constructors, Method Overriding, the Object class, Abstract Classes and Methods, using final with Inheritance.

Module 3

More features of Java:

Packages and Interfaces - Defining Package, CLASSPATH, Access Protection, Importing Packages, Interfaces.

Exception Handling - Checked Exceptions, Unchecked Exceptions, try Block and catch Clause, Multiple catch Clauses, Nested try Statements, throw, throws and finally.

Input/Output - I/O Basics, Reading Console Input, Writing Console Output, PrintWriter Class, Object Streams and Serialization, Working with Files.

Module 4

Advanced features of Java:

Java Library - String Handling - String Constructors, String Length, Special String Operations Character Extraction, String Comparison, Searching Strings, Modifying Strings, using valueOf(), Comparison of StringBuffer and String.

Collections framework - Collections overview, Collections Interfaces- Collection Interface, List Interface.

Collections Class - ArrayList class. Accessing a Collection via an Iterator.
Event handling - Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Model.

Multithreaded Programming - The Java Thread Model, The Main Thread, Creating Thread, Creating Multiple Threads, Synchronization, Suspending, Resuming and Stopping Threads.

Module 5

Graphical User Interface and Database support of Java:

Swings fundamentals - Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings -JFrame, JLabel, The Swing Buttons, JTextField.

Java DataBase Connectivity (JDBC) - JDBC overview, Creating and Executing Queries - create table, delete, insert, select.

Text Books:

1. Herbert Schildt, Java: The Complete Reference, 8/e, Tata McGraw Hill, 2011.
2. Rajib Mall, Fundamentals of Software Engineering, 4th edition, PHI, 2014.
3. Paul Deitel, Harvey Deitel, Java How to Program, Early Objects $11^{\text {th }}$ Edition, Pearson, 2018.

Reference Books:

1. Y. Daniel Liang, Introduction to Java Programming, 7/e, Pearson, 2013.
2. Nageswararao R., Core Java: An Integrated Approach, Dreamtech Press, 2008.
3. Flanagan D., Java in A Nutshell, 5/e, O'Reilly, 2005.
4. Barclay K., J. Savage, Object Oriented Design with UML and Java, Elsevier, 2004.
5. Sierra K., Head First Java, 2/e, O'Reilly, 2005.
6. Balagurusamy E., Programming JAVA a Primer, 5/e, McGraw Hill, 2014.

Sample Course Level Assessment Questions

Course Outcome1(CO1): For the following passage develop UML diagrams and then implement it as a Java program in accordance with your UML design.

Passage: College Office collects semester fee and college bus fee for each student. A clerk at the college office collects the fees from each student. The bus fee is calculated depending on the distance of the corresponding bus stop from the college. The semester fee varies depending upon the semester as well as branch of each student. Students are supposed to pay the fees in full. Economically backward students are eligible for 50% discount in semester fee. The consolidated fees receipt is issued to each student by the clerk, which contains the student name, admission number, semester and branch of student along with details of fees collected. Students can log in and view the details of fees remitted and dues if any. The system allows students and clerk level login to the system. Clerk is able to view reports of each class showing status of fees payment of each student.

Course Outcome 2(CO2): Write a Java program to evaluate a post fix expression containing two operands and a single operator using stack. Stack should be implemented as a separate entity so as to reflect OOP concepts.

Course Outcome 3(CO3): Write a program to demonstrate the start, run, sleep and join methods in Thread class.

Course Outcome 4(CO4): Write a GUI based program with separate buttons to add, delete and display student details i.e. name, student ID, current semester and branch of study based on student ID.

Course Outcome 5(CO5): Using Swing create a JFrame with a JLabel and two JButtons. Set the texts of JButtons as "Yes" and "No" respectively. Set the JLabel's text to the text of the button currently being pressed. Initially the JLabel's text is blank.

Model Question Paper

QP CODE:
PAGES:3
Reg No: \qquad
Name: \qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
THIRD SEMESTER B.TECH DEGREE EXAMINATION, MONTH \& YEAR Course Code: CST 205

Course Name: Object Oriented Programming using Java

Max.Marks:100
Duration: 3 Hours
PART A
Answer all Questions. Each question carries 3 Marks

1. Briefly explain the portable, secure and robust features of Java.
2. Describe the concepts of object and class with a suitable Java program.
3. Explain the concept of method overriding with an example.
4. What is the use of the keyword final in Java?
5. Explain the concept of streams.
6. Explain any two applications of Serialization.
7. Distinguish the usage of "="" and equals() method when comparing String type?
8. What are Collections in Java? Explain any one Collection interface in Java.
9. Explain any two properties of Swing components in Java.
10. Explain JLabel component. With suitable examples explain any two of its constructors.

Part B

Answer any one question completely from each module
11.
(a) Describe in detail any three Object Oriented Programming principles. Illustrate with suitable examples.
(b) What is Java Runtime Environment? What is the role of Java Virtual Machine in it?

OR

12.

(a) Compare and contrast Java standard edition and Java enterprise edition.
(b) Why is Java considered to be platform independent? What is the role of Bytecode in making Java platform independent?
13.
(a) Explain in detail the primitive data types in Java.
(b) Explain automatic type conversion in Java with an example. What are the two conditions required for it ?
14.
(a) Using a suitable Java program explain the difference between private and public members in the context of inheritance.
(b) Is it possible to use the keyword super within a static method? Give justification for your answer.
15.
(a) Explain in detail about byte streams and character streams with suitable code samples.
(b) Describe in detail about exception handling, try block and catch clause with the help of a suitable Java program.
16.
(a) Explain object streams in Java. Explain the role of Serializable interface with a suitable code sample.
(b) Explain throw, throws and finally constructs with the help of a Java program.
17.
(a) Describe in detail the creation of a thread using the Runnable interface and the Thread class with suitable examples.
(b) Explain List Interface. Mention any two exceptions thrown by its methods.
18.
(a) Explain in detail the Delegation Event model for event handling in Java.
(b) Write a simple program by extending appropriate class to demonstrate the working of threads in java.
19.
(a) Write a Java program to demonstrate the use of JLabel and JButton by adding them to JFrame.
(b) Explain step-by-step procedure of using Java DataBase Connectivity in Java programs.
20.
(a) Explain the class hierarchy of Java Swing components.
(b) Write a Java Program to create a student table and to add student details to it using JDBC.

Teaching Plan		
	Module 1 : Introduction	(8 hours)
1.1	Approaches to Software Design- Functional Oriented Design, ObjectOriented Design, Case Study of Automated Fire Alarm System.	1 hour
1.2	Object Modeling Using UML - Basic object oriented concepts	1 hour
1.3	Basic object oriented concepts	1 hour
1.4	UML diagrams, Use case model $-1 \sim$	1 hour
1.5	Class diagram, Interaction diagram	1hour
1.6	Activity diagram, State chart diagram	1hour
1.7	Java programming Environment and Runtime Environment, Development Platforms -Standard, Enterprise. JVM, Java compiler, Bytecode	1hour
1.8	Java applet, Java Buzzwords, Java program structure, Comments, Garbage Collection, Lexical Issues	1hour
	Module 2: Core Java Fundamentals	(11 hours)
2.1	Core Java Fundamentals: Primitive Data types, Integers, Floating Point Types, Characters, Boolean	1 hour
2.2	Literals, Type Conversion and Casting, Variables, Arrays, Strings, Vector class.	1 hour
2.3	Operators: Arithmetic Operators, Bitwise Operators, Relational Operators, Boolean Logical Operators, Assignment Operator, Conditional (Ternary) Operator, Operator Precedence.	1 hour
2.4	Control Statements: Selection Statements, Iteration Statements and Jump Statements.	1 hour
2.5	Object Oriented Programming in Java: Class Fundamentals, Declaring Objects, Object Reference, Introduction to Methods	1 hour
2.6	Constructors, this Keyword, Method Overloading, Using Objects as Parameters	1 hour
2.7	Returning Objects, Recursion, Access Control, static Members	1 hour

2.8	Final Variables, Inner Classes, Command-Line Arguments, Variable Length Arguments	1 hour
2.9	Inheritance : Super class, Sub class, the keywords super, protected Members,	1 hour
2.10	Calling Order of Constructors, Method Overriding, the Object class,	1 hour
2.11	Abstract Classes and Methods, Using final with Inheritance	1 hour
Module 3: More features of Java	$(8$ hours)	
3.1	Packages and Interfaces: Defining Package, CLASSPATH, Access Protection, Importing Packages	1 hour
3.2	Interfaces	1 hour
3.3	Input / Output: I/O Basics, Reading Console Input, Writing Console Output, PrintWriter Class	1 hour
3.4	Object Streams and Serialization	1 hour
3.5	Working with Files	1 hour
3.6	Exception Handling: Checked Exceptions, Unchecked Exceptions, try Block and catch Clause	1 hour
3.7	Multiple catch Clauses, Nested try Statements	1 hour
3.8	throw, throws and finally	1 hour
	Module 4:Advanced features of Java	$(10$ hours)
4.1	Java Library: String Handling - String Constructors, String Length, Special String Operations	1 hour
4.2	Character Extraction, String Comparison, Searching Strings, Modifying Strings Using valueOf(), Comparison of String Buffer and String.	1 hour
4.3	Collections framework - Collections overview, Collections Interfaces- Collection Interface	1 hour
4.4	List Interface, Collections Class - ArrayList Class	1 hour
4.5	Accessing Collections via an Iterator.	1 hour
4.6	Event handling: Event Handling Mechanisms, Delegation Event Model	1 hour
4.7	Delegation Event Model, Event Classes	1 hour
2		

4.8	Sources of Events, Event Listener Interfaces, Using the Delegation Model	1hour
4.9	Multithreaded Programming: The Java Thread Model, The Main Thread, Creating Thread	1 hour
4.10	Creating Multiple Threads, Synchronization, Suspending, Resuming and Stopping Threads.	1 hour
Module 5: Graphical User Interface and Database support of Java	(8 hours)	
5.1	Swings fundamentals, Swing Key Features	1 hour
5.2	MVC, Swing Controls, Components and Containers	1 hour
5.3	Swing Packages, Event Handling in Swings.	1 hour
5.4	Swing Layout Managers	1 hour
5.5	Exploring Swings -JFrame, JLabel, The Swing Buttons, JTextField.	1 hour
5.6	JDBC overview, Creating and Executing Queries - create table, delete, insert, select (Basics only, DBMS course is not a prerequisite).	1 hour
5.7	Creating and Executing Queries - create table, delete, insert, select.	1 hour
5.8	Creating and Executing Queries - create table, delete, insert, select.	1 hour

CSL 201	DATA STRUCTURES LAB	CATEGORY	L	T	P	CREDIT	YEAR OF INTRODUCTION
	PCC	0	0	3	2	2019	

Preamble: The aim of the Course is to give hands-on experience for Learners on creating and using different Data Structures. Data Structures are used to process data and arrange data in different formats for many applications. The most commonly performed operations on data structures are traversing, searching, inserting, deleting and few special operations like merging and sorting.

Prerequisite: Topics covered under the course Programming in C (EST 102)

CO1	Write a time/space efficient program using arrays/linked lists/trees/graphs to provide necessary functionalities meeting a given set of user requirements (Cognitive Knowledge Level: Analyse)
$\mathbf{C O 2}$	Write a time/space efficient program to sort a list of records based on a given key in the record (Cognitive Knowledge Level: Apply)
$\mathbf{C O 3}$	Examine a given Data Structure to determine its space complexity and time complexities of operations on it (Cognitive Knowledge Level: Apply)
$\mathbf{C O 4}$	Design and implement an efficient data structure to represent given data (Cognitive Knowledge Level: Apply)
$\mathbf{C O 5}$	Write a time/space efficient program to convert an arithmetic expression from one notation to another (Cognitive Knowledge Level: Apply)
$\mathbf{C O 6}$	Write a program using linked lists to simulate Memory Allocation and Garbage Collection (Cognitive Knowledge Level: Apply)

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	$($	0	((3)		0		0		0
CO2)			(2)		(1)		(a)
CO3											-	(0)
CO4							\cdots		1			(a)
$\mathrm{CO5}$										(2)		(0)
CO6								(1)		(2)		(1)

Abstract POs defined by National Board of Accreditation			
PO\#	Broad PO	PO\#	Broad PO
PO1	Engineering Knowledge	PO7	Environment and Sustainability
PO2	Problem Analysis	PO8	Ethics
PO3	Design/Development of solutions	PO9	Individual and team work
PO4	Conduct investigations of complex problems	PO10	Communication
PO5	Modern tool usage	PO11	Project Management and Finance
PO6	The Engineer and Society	PO12	Life long learning

Assessment Pattern

Bloom's Category	Continuous Assessment Test (Internal Exam)Percentage	End Semester Examination Percentage
Remember	20	20
Understand	20	20
Apply	60	60
Analyse		
Evaluate		
Create		

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	75	75	3 hours

Continuous Internal Evaluation Pattern:

Attendance	$: 15$ marks
Continuous Evaluation in Lab	$: 30$ marks
Continuous Assessment Test	$: 15$ marks
Viva-voce	$: 15$ marks

Internal Examination Pattern: The marks will be distributed as Algorithm 30 marks, Program 20 marks, Output 20 marks and Viva 30 marks. Total 100 marks which will be converted out of 15 while calculating Internal Evaluation marks.

End Semester Examination Pattern: The marks will be distributed as Algorithm 30 marks, Program 20 marks, Output 20 marks and Viva 30 marks. Total 100 marks will be converted out of 75 for End Semester Examination.

Operating System to Use in Lab
Compiler/Software to Use in Lab : gcc
Programming Language to Use in Lab : Ansi C

Fair Lab Record:

All Students attending the Data Structures Lab should have a Fair Record. The fair record should be produced in the University Lab Examination. Every experiment conducted in the lab should be noted in the fair record. For every experiment in the fair record the right hand page should contain Experiment Heading, Experiment Number, Date of Experiment, Aim of Experiment, Data Structure used and the operations performed on them, Details of Experiment including algorithm and Result of Experiment. The left hand page should contain a print out of the code used for the experiment and sample output obtained for a set of input.

SYLLABUS

1. Implementation of Polynomials and Sparse matrices using arrays**
2. Implementation of Stack, Queues, Priority Queues, DEQUEUE and Circular Queues using arrays**
3. Application problems using stacks: Conversion of expression from one notation to another notation . ${ }^{* *}$
4. Implementation of various linked list operations.
5. Implementation of stack, queue and their applications using linked list.pression
6. Implementation of trees using linked list
7. Representation of polynomials using linked list, addition and multiplication of polynomials. ${ }^{* *}$
8. Implementation of binary trees using linked lists and arrays- creations, insertion, deletion and traversal. **
9. Implementation of binary search trees - creation, insertion, deletion, search
10. Any application programs using trees
11. Implementation of sorting algorithms - bubble, insertion, selection, quick, merge sort
and heap sort.**
12. Implementation of searching algorithms - linear search, binary search.**
13. Representation of graphs and computing various parameters (in degree, out degree etc.) adjacency list, adjacency matrix.
14. Implementation of BFS and DFS for each graph representations.**
15. Implementation of hash table using your own mapping functions and observe collisions and overflow resolving schemes.**
16. Simulation of first-fit, best-fit and worst-fit allocations.
17. Simulation of a basic memory allocator and garbage collector using doubly linked list. ** mandatory.

DATA STRUCTURES LAB - PRACTICE QUESTIONS

1. Write a program to read two polynomials and store them in an array. Calculate the sum of the two polynomials and display the first polynomial, second polynomial and the resultant polynomial.
2. C Write a program to enter two matrices in normal form . Write a function to convert two matrices to tuple form and display it. Also find the transpose of the two matrices represented in tuple form and display it. Find the sum of the two matrices in tuple form and display the sum in tuple form.
3. Write a program to enter two matrices in normal form . Write a function to convert two matrices to tuple form and display it. Also find the transpose of the two matrices represented in tuple form and display it. Find the sum of the two matrices in tuple form and display the sum in tuple form.
4. Implement a circular queue using arrays with the operations:
4.1. Insert an element to the queue.
4.2. Delete an elements from the queue.
4.3. Display the contents of the queue after each operation.
5. Implement a Queue using arrays with the operations:
5.1. Insert elements to the Queue.
5.2. Delete elements from the Queue.
5.3.Display the contents of the Queue after each operation.
6. Implement a Stack using arrays with the operations:
6.1. Pushing elements to the Stack.
6.2. Popping elements from the Stack
6.3. Display the contents of the Stack after each operation.
7. Implement a Priority Queue using arrays with the operations:
7.1. Insert elements to the Priority Queue.
7.2. Delete elements from the Priority Queue.
7.3. Display the contents of the Priority Queue after each operation.
8. Implement a Double-Ended Queue (DEQUEUE) with the operations:
8.1. Insert elements to the Front of the queue.
8.2. Insert elements to the Rear of the queue
8.3. Delete elements from the Front of the queue.
8.4. Delete elements from the Rear of the queue.
8.5. Display the queue after each operation.
9. Using stack convert an infix expression to a postfix expression and evaluate the postfix expression.
10. Write a program to convert an infix expression to a prefix expression using stacks.
11. Convert an infix expression to a postfix expression without using a stack
12. Write a menu driven program for performing the following operations on a Linked List:
12.1.Display
12.2.Insert at Beginning
12.3.Insert at End
12.4.Insert at a specified Position
12.5.Delete from Beginning
12.6.Delete from End
12.7.Delete from a specified Position
13. Implement a stack using linked list with the operations:
13.1.Push elements to the queue.
13.2.Pop elements from the queue.
13.3.Display the queue after each operation.
14. Implement a Queue using linked list with the operations:
14.1.Insert an elements to the queue.
14.2. Delete an elements from the queue.
14.3.Display the queue after each operation.
15. Write a program to reverse the content of queue using stack
16. Write a program to read two polynomials and store them using linked list. Calculate the sum of the two polynomials and display the first polynomial, second polynomial and the resultant polynomial.
17. Write a program to read two polynomials and store them using linked list. Find the product of two polynomials and store the result using linked list. Display the resultant polynomial.
18. Write a program for addition of polynomials containing two variables using linked list.
19. The details of students(number, name, total-mark) are to be stored in a linked list. Write functions for the following operations:
19.1.Insert
19.2.Delete
19.3.Search
19.4.Sort on the basis of number
19.5.Display the resultant list after every operation
20. Create a Doubly Linked List from a string taking each character from the string. Check if the given string is palindrome in an efficient method.
21. Create a binary tree with the following operations
21.1. Insert a new node
21.2. Inorder traversal.
21.3. Preorder traversal.
21.4. Postorder traversal.
21.5. Delete a node.
22. Write a program to create a binary search tree and find the number of leaf nodes
23. Create a binary search tree with the following operations:
23.1. Insert a new node .
23.2. Inorder traversal.
23.3. Preorder traversal.
23.4. Postorder traversal.
23.5. Delete a node.
24. Write a program to sort a set of numbers using a binary tree.
25. Represent any given graph and
25.1. Perform a depth first search .
25.2.Perform a breadth first search
26. Create a text file containing the name, height, weight of the students in a class. Perform Quick sort and Merge sort on this data and store the resultant data in two separate files. Also write the time taken by the two sorting methods into the respective files.

Eg.	Sony Mathew	5.5	60
	Arun Sajeev	5.7	58
	Rajesh Kumar	6.1	70

27. Write a program to sort a set of numbers using Heap sort and find a particular number from the sorted set using Binary Search.
28. Implement a Hash table using Chaining method. Let the size of hash table be 10 so that the index varies from 0 to 9 .
29. Implement a Hash table that uses Linear Probing for collision resolution

$\begin{array}{c}\text { CSL } \\ 203\end{array}$	$\begin{array}{c}\text { OBJECT ORIENTED } \\ \text { PROGRAMMING } \\ \text { LAB (IN JAVA) }\end{array}$	CATEGORY	L	T	P	CREDIT
	PCC	YEAR OF				
INTRODUCTION						

Preamble: The aim of the course is to provide hands-on experience to the learners on various object oriented concepts in Java Programming. This course helps the learners to enhance the capability to design and implement various Java applications for real world problems.

Prerequisite: Topics covered under the course Programming in C (EST 102)

Course Outcomes:

At the end of the course, the student should be able to

CO1	Implement the Object Oriented concepts - constructors, inheritance, method overloading \& overriding and polymorphism in Java (Cognitive Knowledge Level: Apply)
$\mathbf{C O 2}$	Implement programs in Java which use datatypes, operators, control statements, built in packages \& interfaces, Input/Output streams and Files (Cognitive Knowledge Level: Apply)
$\mathbf{C O 3}$	Implement robust application programs in Java using exception handling (Cognitive Knowledge Level: Apply)
$\mathbf{C O 4}$	Implement application programs in Java using multithreading and database connectivity (Cognitive Knowledge Level: Apply)
$\mathbf{C O 5}$	Implement Graphical User Interface based application programs by utilizing event handling features and Swing in Java (Cognitive Knowledge Level: Apply)

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Q	0	Q	0	0			0		0		0
CO2	Q	0	0	0	Q			0		0		0
CO3	0	0	0	0	Q			0		0		0
CO4	0	0	0	0	Q			0		0		0
CO5	0	0	0	0	0			0		0		0

Abstract POs defined by National Board of Accreditation			
PO\#	Broad PO	PO\#	Broad PO
PO1	Engineering Knowledge	PO7	Environment and Sustainability
PO2	Problem Analysis	PO8	Ethics
PO3	Design/Development of solutions	PO9	Individual and team work
PO4	Conduct investigations of complex problems	PO10	Communication
PO5	Modern tool usage	PO11	Project Management and Finance
PO6	The Engineer and Society	PO12	Life long learning

Assessment Pattern

Bloom's Category	Continuous Assessment Test - Internal Exam (Percentage)	End Semester Examination (Percentage)
Remember	20	20
Understand	20	20
Apply	60	60
Analyse		
Evaluate		
Create		

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	75	75	3 hours

Continuous Internal Evaluation Pattern:

Attendance	$: 15$ marks
Continuous Evaluation in Lab	$: 30$ marks
Continuous Assessment Test	$: 15$ marks
Viva-voce	$: 15$ marks

Internal Examination Pattern: The marks will be distributed as Algorithm 30 marks, Program 20 marks, Output 20 marks and Viva 30 marks. Total 100 marks which will be converted out of 15 while calculating Internal Evaluation marks.

End Semester Examination Pattern: The marks will be distributed as Algorithm 30 marks, Program 20 marks, Output 20 marks and Viva 30 marks. Total 100 marks will be converted out of 75 for End Semester Examination.

Operating System to Use in Lab : Linux

Compiler/Software to Use in Lab : gcc, javac, jdk, jre, Eclipse, NetBeans,
MySQL / PostgreSQL.

Programming Language to Use in Lab : Java

Fair Lab Record:

All Students attending the Object Oriented Programming Lab (in Java) should have a Fair Record. The fair record should be produced in the University Lab Examination. Every experiment conducted in the lab should be noted in the fair record. For every experiment in the fair record the right hand page should contain Experiment Heading, Experiment Number, Date of Experiment, Aim of Experiment, Operations Performed, Details of Experiment including algorithm and Result of Experiment. The left hand page should contain a print out of the code used for the experiment and sample output obtained for a set of input.

SYLLABUS

The syllabus contains six sessions (A, B, C, D, E, F). Each session consists of three concrete Java exercises, out of which at least two questions are mandatory.
(A) Basic programs using datatypes, operators, and control statements in Java.

1) Write a Java program that checks whether a given string is a palindrome or not. Ex: MALAYALAM is palindrome.
2) Write a Java Program to find the frequency of a given character in a string. **
3) Write a Java program to multiply two given matrices. **
(B) Object Oriented Programming Concepts: Problem on the use of constructors, inheritance, method overloading \& overriding, polymorphism and garbage collection:
4) Write a Java program which creates a class named 'Employee' having the following members: Name, Age, Phone number, Address, Salary. It also has a method named 'printSalary ()' which prints the salary of the Employee. Two classes 'Officer' and 'Manager' inherits the 'Employee' class. The 'Officer' and 'Manager' classes have data members 'specialization' and 'department' respectively. Now, assign name, age, phone number, address and salary to an officer and a manager by making an object of both of these classes and print the same. (Exercise to understand inheritance). **
5) Write a java program to create an abstract class named Shape that contains an empty method named numberOfSides(). Provide three classes named Rectangle, Triangle and Hexagon such that each one of the classes extends the class Shape. Each one of the classes contains only the method numberOfSides() that shows the number of sides in the given geometrical structures. (Exercise to understand polymorphism). *
6) Write a Java program to demonstrate the use of garbage collector.
(C) Handling different types of files as well as input and output management methods:
7) Write a file handling program in Java with reader/writer.
8) Write a Java program that read from a file and write to file by handling all file related exceptions. **
9) Write a Java program that reads a line of integers, and then displays each integer, and the sum of all the integers (Use String Tokenizer class of java.util). **
(D) Exception handling and multi-threading applications:
10) Write a Java program that shows the usage of try, catch, throws and finally. **
11) Write a Java program that implements a multi-threaded program which has three threads. First thread generates a random integer every 1 second. If the value is even, second thread computes the square of the number and prints. If the value is odd the third thread will print the value of cube of the number.
12) Write a Java program that shows thread synchronization. **
(E) Graphics Programming:
13) Write a Java program that works as a simple calculator. Arrange Buttons for digits and the $+\ldots \%$ operations properly. Add a text field to display the result. Handle any possible exceptions like divide by zero. Use Java Swing. **
14) Write a Java program that simulates a traffic light. The program lets the user select one of three lights: red, yellow, or green. When a radio button is selected, the light is turned on, and only one light can be on at a time. No light is on when the program starts. **
15) Write a Java program to display all records from a table using Java Database Connectivity (JDBC).
(F) Standard Searching and Sorting Algorithms using data structures and algorithms learned from course Data Structures (CST 201):
16) Write a Java program for the following:
17) Create a doubly linked list of elements.
18) Delete a given element from the above list.
19) Display the contents of the list after deletion.
20) Write a Java program that implements Quick sort algorithm for sorting a list of names in ascending order. **
21) Write a Java program that implements the binary search algorithm.
[^1]
PRACTICE QUESTIONS

1) Write a Java program to reverse an given string.
2) Write a Java program to display the transpose of a given matrix.
3) Write a Java program to find the second smallest element in an array.
4) Write a Java program to check whether a given number is prime or not.
5) Write a Java program to calculate the area of different shapes namely circle, rectangle, and triangle using the concept of method overloading.
6) Write two Java classes Employee and Engineer. Engineer should inherit from Employee class. Employee class to have two methods display() and calcSalary(). Write a program to display the engineer salary and to display from Employee class using a single object instantiation (i.e., only one object creation is allowed).

- display() only prints the name of the class and does not return any value. Ex. "Name of class is Employee."
- calcSalary() in Employee displays "Salary of employee is 10000 " and calcSalary() in Engineer displays "Salary of employee is 20000."

7) Write a Java program to illustrate Interface inheritance.
8) Write a Java program that shows how to create a user-defined exception.
9) Write a Java program to create two threads: One for displaying all odd number between 1 and 100 and second thread for displaying all even numbers between 1 and 100 .
10) Write a Java program that shows thread priorities.
11) Write a Java program that reads a file and displays the file on the screen, with a line number before each line.
12) Write a Java program that displays the number of characters, lines and words in a text file.
13) Write a Java program for handling mouse events.
14) Write a Java program for handling key events using Adapter classes (general).
15) Write a Java program that allows the user to draw lines, rectangles and ovals.
16) Write a Java Swing program to print a wave form on the output screen.
17) Write a program to accept rollno, name, CGPA of "n" students and store the data to a database using JDBC connectivity. Display the list of students having CGPA greater than 7. (Use MySQL /PostgreSQL).
18) Write a Java program to implement Heap sort algorithm using array.

SEMESTER - 3

MINOR

CST 281	OBJECT ORIENTED PROGRAMMING	CATEGORY	L	T	P	CREDIT

Preamble: This is the programming course for awarding B.Tech. Minor in Computer Science and Engineering with specialization in Software Engineering. The purpose of this course is to enable learners to solve problems by breaking it down to object level while designing software and to implement it using Java. This course covers Object Oriented Principles, Object Oriented Programming in Java, Inheritance, Exception handling, Event handling, multithreaded programming and working with window-based graphics. This course helps the learners to develop Mobile applications, Enterprise Applications, Scientific Applications and Web based Applications.

Prerequisite: Topics covered under the course PROGRAMMING IN C (EST 102)
Course Outcomes: After the completion of the course the student will be able to

CO1	Write Java programs using the object oriented concepts - classes, objects, constructors, data hiding, inheritance and polymorphism (Cognitive Knowledge Level: Apply)
$\mathbf{C O 2}$	Utilise datatypes, operators, control statements, built in packages \& interfaces, Input/ Output Streams and Files in Java to develop programs (Cognitive Knowledge Level: Apply)
$\mathbf{C O 3}$	Illustrate how robust programs can be written in Java using exception handling mechanism (Cognitive Knowledge Level: Understand)
$\mathbf{C O 4}$	Write application programs in Java using multithreading (Cognitive Knowledge Level: Apply)
$\mathbf{C O 5}$	Write Graphical User Interface based application programs by utilising event handling features and Swing in Java (Cognitive Knowledge Level: Apply)

Mapping of course outcomes with program outcome

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
C03												
$\operatorname{CO4}$												
$\operatorname{Co5}$												

Abstract POs defined by National Board of Accreditation			
PO\#	Broad PO	PO\#	Broad PO
PO1	Engineering Knowledge	PO7	Environment and Sustainability
PO2	Problem Analysis	PO8	Ethics
PO3	Design/Development of solutions	PO9	Individual and team work
PO4	Conduct investigations of complex problems	PO10	Communication
PO5	Modern tool usage	PO11	Project Management and Finance
PO6	The Engineer and Society	PO12	Life long learning

Assessment Pattern

Bloom's Category	Continuous Assessment Tests		End Semester Examination Marks (\%)
	Test1 (Marks \%)	Test2 (Marks \%)	
Remember	30	30	30
Understand	30	30	40
Apply	40	40	
Analyse			
Evaluate			
Create			

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:
Attendance
10 marks
Continuous Assessment Tests : 25 marks
Continuous Assessment Assignment : 15 marks

Internal Examination Pattern:

Each of the two internal examinations has to be conducted out of 50 marks

First series test shall be preferably conducted after completing the first half of the syllabus and the second series test shall be preferably conducted after completing remaining part of the syllabus.

There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly covered module), having 3 marks for each question adding up to 15 marks for part A. Students should answer all questions from Part A. Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly covered module), each with 7 marks. Out of the 7 questions in Part B, a student should answer any 5.

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

SYLLABUS

Object Oriented Programming Using Java

Module 1

Introduction:

Approaches to Software Design - Functional Oriented Design, Object Oriented Design, Case Study of Automated Fire Alarm System.
Object Modeling Using UML - Basic Object Oriented concepts, UML (Unified Modeling Language) diagrams, Use case model, Class diagram, Interaction diagram, Activity diagram, State chart diagram.

Introduction to Java - Java programming Environment and Runtime Environment, Development Platforms -Standard, Enterprise. Java Virtual Machine (JVM), Java compiler, Bytecode, Java applet, Java Buzzwords, Java program structure, Comments, Garbage Collection, Lexical Issues.

Module 2

Core Java Fundamentals:

Primitive Data types - Integers, Floating Point Types, Characters, Boolean. Literals, Type Conversion and Casting, Variables, Arrays, Strings, Vector class.

Operators - Arithmetic Operators, Bitwise Operators, Relational Operators, Boolean Logical Operators, Assignment Operator, Conditional (Ternary) Operator, Operator Precedence.
Control Statements - Selection Statements, Iteration Statements and Jump Statements.
Object Oriented Programming in Java - Class Fundamentals, Declaring Objects, Object Reference, Introduction to Methods, Constructors, this Keyword, Method Overloading, Using Objects as Parameters, Returning Objects, Recursion, Access Control, Static Members, Final Variables, Inner Classes, Command-Line Arguments, Variable Length Arguments.

Module 3

More features of Java:

Inheritance - Super Class, Sub Class, The Keyword super, protected Members, Calling Order of Constructors, Method Overriding, the Object class, Abstract Classes and Methods, Using final with Inheritance.

Packages and Interfaces - Defining Package, CLASSPATH, Access Protection, Importing Packages, Interfaces.

Exception Handling - Checked Exceptions, Unchecked Exceptions, try Block and catch Clause, Multiple catch Clauses, Nested try Statements, throw, throws and finally.

Module 4

Advanced features of Java:

Input/Output - I/O Basics, Reading Console Input, Writing Console Output, PrintWriter Class, Object Streams and Serialization, Reading and Writing Files.

Java Library - String Handling - String Constructors, String Length, Special String Operations Character Extraction, String Comparison, Searching Strings, Modifying Strings, Using valueOf(), Comparison of StringBuffer and String.
Collections framework - Collections overview, Collections Class - ArrayList. Accessing Collections via an Iterator.

Module 5

GUI Programming, Event Handling and Multithreaded Programming:

Swing fundamentals - Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Exploring Swing - JFrame, JLabel, JButton, JTextField.

Event handling - Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Model.

Multithreaded Programming - The Java Thread Model, The Main Thread, Creating Thread, Creating Multiple Threads, Suspending, Resuming and Stopping Threads.

Text Books:

1. Herbert Schildt, Java: The Complete Reference, 8/e, Tata McGraw Hill, 2011.
2. Rajib Mall, Fundamentals of Software Engineering, 4 ${ }^{\text {th }}$ edition, PHI, 2014.
3. Paul Deitel, Harvey Deitel, Java How to Program, Early Objects 11th Edition, Pearson, 2018.

Reference Books:

1. Y. Daniel Liang, Introduction to Java Programming, 7/e, Pearson, 2013.
2. Nageswararao R., Core Java: An Integrated Approach, Dreamtech Press, 2008.
3. Flanagan D., Java in A Nutshell, 5/e, O'Reilly, 2005.
4. Barclay K., J. Savage, Object Oriented Design with UML and Java, Elsevier, 2004.
5. Sierra K., Head First Java, 2/e, O'Reilly, 2005.
6. Balagurusamy E., Programming JAVA a Primer, 5/e, McGraw Hill, 2014.

Sample Course Level Assessment Questions

Course Outcome1(CO1): For the following passage develop UML diagrams and then implement it as a Java program in accordance with your UML design.

Passage: College Office collects semester fee and college bus fee for each student. A clerk at the college office collects the fees from each student. The bus fee is calculated depending on the distance of the corresponding bus stop from the college. The semester fee varies depending upon the semester as well as branch of each student. Students are supposed to pay the fees in full. Economically backward students are eligible for 50% discount in semester fee. The consolidated fees receipt is issued to each student by the clerk, which contains the student name, admission number, semester and branch of student along with details of fees collected. Students can \log in and view the details of fees remitted and dues if any. The system allows students and clerk level login to the system. Clerk is able to view reports of each class showing status of fees payment of each student.

Course Outcome 2 (CO2): Write a Java program to prepare the rank list of students based one their performance in the first Semester B.Tech. Degree examination at APJ Abdul Kalam Technological University. The output should be stored in a file.

Course Outcome 3 (CO3): Write a program to demonstrate how event handling and exception handling are supported in Java..

Course Outcome 4 (CO4): Write a program to demonstrate the start, run, sleep and join methods in Thread class..

Model Question Paper

QP CODE:
PAGES:3
Reg No: \qquad
Name: \qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
THIRD SEMESTER B.TECH (MINOR) DEGREE EXAMINATION, MONTH \& YEAR

Course Code: CST 281

Course Name: Object Oriented Programming using Java

Max.Marks:100

Duration: 3 Hours

PART A

Answer all Questions. Each question carries 3 Marks

1. Briefly explain why Java is considered to be secure and portable.
2. Describe the concept of association among classes with an example.
3. Explain the different arithmetic operators in Java.
4. Explain the use for command line arguments with a suitable Java program
5. Explain the use of CLASSPATH with an example.
6. What are the different types of exceptions?
7. Explain file handling features available in Java.
8. Write a simple program to read and print an integer value in Java.
9. Explain the concept of main thread in multi-threading.
10. Explain any two Event classes in Java.

Part B

Answer any one question completely from each module
11. (a) Describe in detail polymorphism, abstraction and inheritance with suitable examples.
(b) What is Java Virtual Machine?
12. (a) Compare and contrast Functional Oriented and Object Oriented approach by considering a simple bus ticket reservation system.
(b) What is a class diagram? Explain with an example.
13. (a) Explain primitive data types in Java. How are they different from other data types?
(b) Explain variables and arrays in Java.
14.s (a) Using a suitable Java program explain the concept of methods and constructors.
(b) Explain the keyword super and its usage in Java.
15. (a) Using a table, explain the effect of access specifiers in inheritance.
(b) Describe in detail about exception handling using try block and catch clause in Java with the help of a suitable Java program.
OR
16. (a) What is an interface in Java? Explain with a suitable example.
(b) Explain throw, throws and finally constructs with the help of a Java program.
17. (a) Explain ArrayList collections framework. Also explain the use of iterator in accessing collections.
(b) Bring out difference between "==" and equals() method with the help of a sample program

18. (a) Compare Byte Streams and Character Streams. Write a program to demonstrate the usage of the PrintWriter class.
(b) Explain any three String constructors with the help of sample code for each.
19. (a) Explain in detail the Delegation Event model for event handling in Java.
(b) Describe in detail the creation of a thread using the Runnable interface.

OR

20. (a) What are the differences between a process and a thread?
(b) Write a Graphical User Interface (GUI) based Java program to implement a simple calculator supporting the operations addition, subtraction, multiplication and division. Use Swing controls to implement GUI. There may be three text boxes, the first two for operands and the last for result. Add four buttons for the above operations. Write neat comments in your program to show how you handle events.

Teaching Plan		
Module 1 (Introduction)		(8 hours)
1.1	Approaches to Software Design- Functional Oriented Design, Object-Oriented Design, Case Study of Automated Fire Alarm System.	1 hour
1.2	Object Modeling Using UML - Basic object oriented concepts	1 hour
1.3	Basic object oriented concepts \square	1 hour
1.4	UML diagrams, Use case model	1hour
1.5	Class diagram, Interaction diagram	1hour
1.6	Activity diagram, State chart diagram	1hour
1.7	Java programming Environment and Runtime Environment, Development Platforms -Standard, Enterprise. JVM, Java compiler, Bytecode	1hour
1.8	Java applet, Java Buzzwords, Java program structure, Comments, Garbage Collection, Lexical Issues	1hour
Module 2 (Core Java Fundamentals)		(12 hours)
2.1	Primitive Data types - Integers, Floating Point Types, Characters, Boolean	1 hour
2.2	Literals, Type Conversion and Casting, Variables, Arrays, Strings, Vector class.	1 hour
2.3	Operators - Arithmetic Operators, Bitwise Operators, Relational Operators, Boolean Logical Operators, Assignment Operator, Conditional (Ternary) Operator, Operator Precedence.	1 hour
2.4	Control Statements - Selection Statements, Iteration Statements and Jump Statements.	1 hour
2.5	Object Oriented Programming in Java - Class Fundamentals, Declaring Objects	1 hour
2.6	Object Reference, Introduction to Methods	1 hour
2.7	Constructors, this Keyword	1 hour
2.8	Method Overloading, Using Objects as Parameters	1 hour

2.9	Returning Objects, Recursion	1 hour
2.10	Access Control, static Members	1 hour
2.11	Final Variables, Inner Classes	1 hour
2.12	Command-Line Arguments, Variable Length Arguments	1 hour
	Module 3 (More features of Java)	(8 hours)
3.1	Inheritance - Super class, Sub class, the keyword super, protected Members,	1 hour
3.2	Calling Order of Constructors, Method Overriding, the Object class,	1 hour
3.3	Abstract Classes and Methods, Using final with Inheritance	1 hour
3.4	Packages and Interfaces - Defining Package, CLASSPATH, Access Protection, Importing Packages	1 hour
3.5	Interfaces	1 hour
3.6	Exception Handling - Checked Exceptions, Unchecked Exceptions, try Block and catch Clause	1 hour
3.7	Multiple catch Clauses, Nested try Statements	1 hour
3.8	throw, throws and finally	1 hour
	Module 4 (Advanced features of Java)	(8 hours)
4.1	Input/Output - I/O Basics, Reading Console Input	1 hour
4.2	Writing Console Output, PrintWriter Class	1hour
4.3	Object Streams and Serialization SLC.	1 hour
4.4	Serialization, Working with Files	1hour
4.5	Working with Files	1hour
4.6	Java Library - String Handling - String Constructors, String Length, Special String Operations	1hour
4.7	Character Extraction, String Comparison, Searching Strings, Modifying Strings Using valueOf(), Comparison of StringBuffer and String.	1hour
4.8	Collections framework - Collections overview, Collections Class ArrayList. Accessing Collections via an Iterator.	1hour

Module 5 (GUI Programming, Event Handling and Multithreaded Programming)		(9 hours)
5.1	Swings fundamentals, Swing Key Features	
5.2	MVC, Swing Controls, Components and Containers	
5.3	Exploring Swing -JFrame, JLabel, JButton, JTextField.	1 hour
5.4	Event handling - Event Handling Mechanisms, Delegation Event Model	1 hour
5.5	Delegation Event Model, Event Classes	1 hour
5.6	Sources of Events, Event Listener Interfaces, Using the Delegation Model	1 hour
5.7	Multithreaded Programming - The Java Thread Model, The Main Thread, Creating Thread	1 hour
5.8	Creating Multiple Threads	1 hour
5.9	Suspending, Resuming and Stopping Threads.	

CST	PYTHON FOR MACHINE	Category	L	T	P	Credit	Year of Introduction
	LEARNING	VAC	3	1	0	4	2019

Preamble: This is a programming course for awarding B. Tech. Minor in Computer Science and Engineering with specialization in Machine Learning. The objective of the course is to provide learners an insight into Python programming, and develop programming skills to manage the development of software systems. It covers programming environment, important instructions, data representations, intermediate level features, Object Oriented Programming and file data processing of Python. This course lays the foundation to develop web applications, Machine Learning, and Artificial Intelligence-based applications and tools, Data Science and Data Visualization applications.

Prerequisite: Nil

Course Outcomes: After the completion of the course the student will be able to

CO1	Write, test and debug Python programs (Cognitive Knowledge level: Apply)
CO2	Illustrate uses of conditional (if, if-else, if-elif-else and switch-case) and iterative (while and for) statements in Python programs (Cognitive Knowledge level: Apply)
CO3	Develop programs by utilizing the modules Lists, Tuples, Sets and Dictionaries in Python (Cognitive Knowledge level: Apply)
CO4	Implement Object Oriented programs with exception handling (Cognitive Knowledge level: Apply)
CO5	Write programs in Python to process data stored in files by utilizing the modules Numpy, Matplotlib, and Pandas (Cognitive Knowledge level: Apply)

Mapping of course outcomes with program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	\checkmark	\checkmark	\checkmark		\checkmark						\checkmark	\checkmark
C02	\checkmark	\checkmark	\checkmark		\checkmark					\checkmark		\checkmark
C03	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark					\checkmark
C04	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark					\checkmark
$\operatorname{CO5}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						\checkmark

Abstract POs defined by National Board of Accreditation

\#PO	Broad PO	\#PO	Broad PO
PO1	Engineering Knowledge	$\mathbf{P O 7}$	Environment and Sustainability
PO2	Problem Analysis	$\mathbf{P O 8}$	Ethics
PO3	Design/Development of solutions	$\mathbf{P O 9}$	Individual and team work
PO4	Conduct investigations of complex problems	$\mathbf{P O 1 0}$	Communication
PO5	Modern tool usage	$\mathbf{P O 1 1}$	Project Management and Finance
PO6	The Engineer and Society	$\mathbf{P O 1 2}$	Life long learning

Assessment Pattern

Bloom's Category	Test 1 (Marks in percentage)	Test 2 (Marks in percentage)	End Semester Examination (Marks in percentage)
Remember	20	20	20
Understand	35	35	35
Apply	45	45	45
Analyse			
Evaluate			
Create			

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	50	100	3

Continuous Internal Evaluation Pattern:

Attendance
: 10 marks
Continuous Assessment Test
: 25 marks
Continuous Assessment Assignment : 15 marks

Each of the two internal examinations has to be conducted out of 50 marks. The first series test shall be preferably conducted after completing the first half of the syllabus and the second series test shall be preferably conducted after completing the remaining part of the syllabus. There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly completed module), having 3 marks for each question adding up to 15 marks for part A. Students should answer all questions from Part A. Part B contains 7 questions (preferably, 3 questions each from the completed modules and 1 question from the partly completed module), each with 7 marks. Out of the 7 questions, a student should answer any 5 .

End Semester Examination Pattern:

There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 questions from each module of which a student should answer any one. Each question can have a maximum of 2 sub-divisions and carries 14 marks.

SYLLABUS

Module I

Programming Environment and Python Basics:

Getting Started with Python Programming - Running code in the interactive shell, Editing, Saving, and Running a script. Using editors - IDLE, Jupyter. The software development process - Case Study.

Basic coding skills - Working with data types, Numeric data types and Character sets, Keywords, Variables and Assignment statement, Operators, Expressions, Working with numeric data, Type conversions, Comments in the program. Input, Processing, and Output. Formatting output. How Python works. Detecting and correcting syntax errors. Using built in functions and modules in math module.

Module II

Building Python Programs:

Control statements - Selection structure (if-else, switch-case), Iteration structure(for, while), Testing the control statements, Lazy evaluation. Functions - Hiding redundancy and complexity, Arguments and return values, Variable scopes and parameter passing, Named arguments, Main function, Working with recursion, Lambda functions. Strings and number systems - String function, Handling numbers in various formats.

Module III

Data Representation:

Lists - Basic list Operations and functions, List of lists, Slicing, Searching and sorting list, List comprehension. Work with tuples. Sets. Work with dates and times. Dictionaries - Dictionary
functions, dictionary literals, adding and removing keys, accessing and replacing values, traversing dictionaries, reverse lookup. Case Study - Data Structure Selection.

Module IV

Object Oriented Programming:

Design with classes - Objects and Classes, Methods, Instance Variables, Constructor, Accessors and Mutators. Structuring classes with Inheritance and Polymorphism. Abstract Classes. Exceptions - Handle a single exception, handle multiple exceptions.

Data Processing:

Module V

The os and sys modules. Introduction to file I/O - Reading and writing text files, Manipulating binary files. NumPy - Basics, Creating arrays, Arithmetic, Slicing, Matrix Operations, Random numbers. Plotting and visualization. Matplotlib - Basic plot, Ticks, Labels, and Legends. Working with CSV files. - Pandas - Reading, Manipulating, and Processing Data.

Text Books:

1. Kenneth A Lambert., Fundamentals of Python : First Programs, 2/e, Cengage Publishing, 2016
2. Wes McKinney, Python for Data Analysis, 2/e, Shroff / O’Reilly Publishers, 2017

Reference Books:

1. Allen B. Downey, Think Python: How to Think Like a Computer Scientist, 2/e, Schroff, 2016
2. Michael Urban and Joel Murach, Python Programming, Shroff/Murach, 2016
3. David M.Baezly, Python Essential Reference. Addison-Wesley Professional; 4/e, 2009.
4. Charles Severance. Python for Informatics: Exploring Information,
5. http://swcarpentry.github.io/python-novice-gapminder/

Sample Course Level Assessment Questions

Course Outcome1(CO1): What is type conversion? How is it done in Python?

Course Outcome 2(CO2): Write a Python program which takes a positive integer \mathbf{n} as input and finds the sum of cubes all positive even numbers less than or equal to the number.

Course Outcome 3(CO3): Given is a list of of words, wordlist, and a string, name. Write a Python function which takes wordlist and name as input and returns a tuple. The first element of
the output tuple is the number of words in the wordlist which have name as a substring in it. The second element of the tuple is a list showing the index at which the name occurs in each of the words of the wordlist and a 0 if it doesn't occur.

Course Outcome 4(CO4): Write a Python program to implement the addition, subtraction, and multiplication of complex numbers using classes. Use constructors to create objects. The input to the program consist of real and imaginary parts of the complex numbers.

Course Outcome 5(CO5): Given a file "auto.csv" of automobile data with the fields index, company, body-style, wheel-base, length, engine-type, num-of-cylinders, horsepower, averagemileage, and price, write python code to

1) Clean and Update the CSV file
2) Print total cars of all companies
3) Find the average mileage of all companies
4) Find the highest priced car of all companies.

Model Question Paper

QP CODE:
PAGES:
Reg No: \qquad
Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH (MINOR) DEGREE EXAMINATION, MONTH \& YEAR
 Course Code: CST 283

Course name : PYTHON FOR MACHINE LEARNING

Max Marks: 100
Duration: 3 Hours

PART-A

(Answer All Questions. Each question carries $\mathbf{3}$ marks)

1. Explain the basic data types available in Python, with examples.
2. Write a Python program to reverse a number and also find the sum of digits of the number. Prompt the user for input.
3. Explain the concept of scope and lifetime of variables in Python programming language, with a suitable example.
4. Discuss format specifiers and escape sequences with examples.
5. Discuss the relation between tuples, lists, and dictionaries in detail.

Discuss the following dictionary methods with an example.
6.
i. get() ii. Keys() iii. pop() iv. update() v. values() vi. items()
7. What is polymorphism? Give an example in the context of OOP in Python.
8. How is exception handling accomplished in Python programs?
9. Write a note on the os and os.path modules in Python. Also, discuss the walk() and getcwd() methods of the os module.
10. Describe the characteristics of the CSV format.

PART-B

(Answer any one full question from each module)

11. (a) Compare and contrast interpreted languages and compiled languages.

How does it affect the quality of program development and execution of the program?
(b) What are the possible errors in a Python program. Write a Python program to print the value of $2^{2 n+n+5}$ for \boldsymbol{n} provided by the user.

12. (a) Describe Arithmetic operators, Assignment operators, Comparison operators, Logical operators, and Bitwise operators in detail with examples.
(b) Explain the software development process in detail.
13. (a) Write a Python code to check whether a given year is a leap year or not [An year is a leap year if it's divisible by 4 but not divisible by 100 except for those divisible by 400].
(b) Input 4 integers (+ve and -ve). Write a Python code to find the sum of negative numbers, positive numbers, and print them. Also, find the averages of these two groups of numbers and print.

OR

14. (a) Write a Python program to find the value for $\sin (x)$ up to n terms using the series

$$
\begin{equation*}
\sin (x)-\frac{x}{1!}-\frac{y^{3}}{3!}+\frac{z^{3}}{5 l}-\frac{x^{7}}{7 l}+\cdots \quad \text { where } x \text { is in degrees } \tag{6}
\end{equation*}
$$

(b) Write a Python code to determine whether the given string is a Palindrome or not using slicing. Do not use any string function.
15. (a) Write a Python code to create a function called list_of frequency that takes a string and prints the letters in non-increasing order of the frequency of their occurrences. Use dictionaries.
(b) Write a Python program to read a list of numbers and sort the list in a nondecreasing order without using any built in functions. Separate function should be written to sort the list wherein the name of the list is passed as the parameter.
16. (a) Illustrate the following Set methods with an example.
i. intersection() ii. Union() iii. Issubset() iv. Difference() v. update() vi. discard()
(b) Write a Python program to check the validity of a password given by the user.
The Password should satisfy the following criteria:

1. Contains at least one letter between \mathbf{a} and \mathbf{z}
2. Contains at least one number between $\mathbf{0}$ and $\mathbf{9}$
3. Contains at least one letter between \mathbf{A} and \mathbf{Z}
4. Contains at least one special character from \$, \#, @
5. Minimum length of password: $\mathbf{6}$
6. (a) How can a class be instantiated in Python? Write a Python program to express the instances as return values to define a class RECTANGLE with parameters height, width, corner_ x, and corner y and member functions to find center, area, and perimeter of an instance.
(b) Explain inheritance in Python. Give examples for each type of inheritance.

OR

18. (a) Write a Python class named Circle constructed by a radius and two methods which will compute the area and the perimeter of a given circle
(b) Write Python program to create a class called as Complex and implement __add__() method to add two complex numbers. Display the result by overloading the + Operator.
19. (a) Write a Python program to add two matrices and also find the transpose of the resultant matrix.
(b) Given a file "auto.csv" of automobile data with the fields index, company, body-style, wheel-base, length, engine-type, num-of-cylinders, horsepower, average-mileage, and price, write Python codes using Pandas to
1) Clean and Update the CSV file
2) Print total cars of all companies
3) Find the average mileage of all companies
4) Find the highest priced car of all companies.
20. (a) Write Python program to write the data given below to a CSV file.

SN Name Country Contribution Year 1 Linus Torvalds Finland Linux Kernel 2 Tim Berners-Lee England World Wide Web 1990 3 Guido van Rossum Netherlands Python 1991
(b) Given the sales information of a company as CSV file with the following fields month_number, facecream, facewash, toothpaste, bathingsoap, shampoo, moisturizer, total_units, total_profit. Write Python codes to visualize the data as follows

1) Toothpaste sales data of each month and show it using a scatter plot
2) Face cream and face wash product sales data and show it using the bar chart
3) Calculate total sale data for last year for each product and show it using a Pie chart.
(14X5=70)

Teaching Plan

Module 1: Programming Environment and Python Basics		$(\mathbf{1 0}$ hours)
$\mathbf{1 . 1}$	Getting Started with Python Programming: Running code in the interactive shell Editing, Saving, and Running a script	$\mathbf{1}$ hour
$\mathbf{1 . 2}$	Using editors: IDLE	$\mathbf{1}$ hour
$\mathbf{1 . 3}$	Jupyter	$\mathbf{1}$ hour
$\mathbf{1 . 4}$	The software development process: Case Study.	$\mathbf{1}$ hour
$\mathbf{1 . 5}$	Basic coding skills: Working with data types, Numeric data types and Character sets, Keywords, Variables and Assignment statement, Operators, Expressions,	$\mathbf{1}$ hour
$\mathbf{1 . 6}$	Working with numeric data, Type conversions, Comments in the program	$\mathbf{1}$ hour
$\mathbf{1 . 7}$	Input, Processing, and Output, Formatting output - How Python works	$\mathbf{1}$ hour
$\mathbf{1 . 8}$	How Python works - Detecting and correcting syntax errors	$\mathbf{1}$ hour
$\mathbf{1 . 9}$	Using built in functions and modules: Case - Using math module	$\mathbf{1}$ hour
$\mathbf{1 . 1 0}$	Using built in functions and modules: Case - Using math module (Examples)	$\mathbf{1}$ hour

Module 2: Building Python Programs		(8 hours)
2.1	Control statements: Selection structure (if-else, switch-case),	1 hour
2.2	Iteration structure(for, while), Testing the control statements, Lazy evaluation	1 hour
2.3	Functions: Hiding redundancy and complexity, Arguments and return values,	1 hour
2.4	Variable scopes and parameter passing	1 hour
2.5	Named arguments, Main function,	1 hour
2.6	Working with recursion, Lambda functions	1 hour
2.7	Strings and number systems: String function	1 hour
2.8	Handling numbers in various format	1 hour
Module 3: Data Representation		(9 hours)
3.1	Lists: Basic list Operations and functions, List of lists	1 hour
3.2	Slicing, Searching and sorting list	1 hour
3.3	List comprehension	1 hour
3.4	Work with tuples, Sets	1 hour
3.5	Work with dates and times	1 hour
3.6	Dictionaries: Dictionary functions,	1 hour
3.7	Dictionary literals, adding and removing keys, accessing \& replacing values	1 hour
3.8	Traversing dictionaries, reverse lookup	1 hour
3.9	Case Study: Data Structure Selection	1 hour
Module 4: Object Oriented Programming		(8 hours)
4.1	Design with classes : Objects and Classes, Methods, Instance Variables	1 hour
4.2	Constructor, Accessors and Mutators	1 hour
4.3	Structuring classes with Inheritance	1 hour
4.4	Polymorphism	1 hour
4.5	Abstract Classes	1 hour
4.6	Abstract Classes	1 hour
4.7	Exceptions : Handle a single exception	1 hour

$\mathbf{4 . 8}$	handle multiple exceptions	$\mathbf{1}$ hour
Module 5: Data Processing	$\mathbf{(1 0}$ hours)	
$\mathbf{5 . 1}$	The os and sys modules	$\mathbf{1}$ hour
$\mathbf{5 . 2}$	Introduction to file I/O: Reading and writing text files	$\mathbf{1}$ hour
$\mathbf{5 . 3}$	Manipulating binary files	$\mathbf{1}$ hour
$\mathbf{5 . 4}$	NumPy : Basics, Creating arrays, Arithmetic, Slicing	$\mathbf{1}$ hour
$\mathbf{5 . 5}$	Matrix Operations, Random numbers.	$\mathbf{1}$ hour
$\mathbf{5 . 6}$	Matplotlib : Basic plot	$\mathbf{1}$ hour
$\mathbf{5 . 7}$	Matplotlib - Ticks, Labels, and Legends	$\mathbf{1}$ hour
$\mathbf{5 . 8}$	Working with CSV files	$\mathbf{1}$ hour
$\mathbf{5 . 9}$	Pandas : Reading, Manipulating	$\mathbf{1}$ hour
$\mathbf{5 . 1 0}$	Pandas : Processing Data and Visualize.	$\mathbf{1}$ hour

CXT285	INTRODUCTION TO COMPUTER GRAPHICS	CATEGORY	L	T	\mathbf{P}	CREDIT	YEAR OF INTRODUCTION
		VAC	3	1	0	4	2021

Preamble: This is the course for awarding B.Tech. Minor in Computer Science and Design with specialization in Computer Graphics. The purpose of this course is to make awareness about the basic concepts in Computer Graphics, Input devices and Display devices, to discuss Line and Circle drawing and Polygon Filling Algorithms and to introduce 2D and 3D transformations, Projections, 3D object representations. This course helps the learner to understand a three-dimensional environment representation in a computer, transformation of 2D/3D objects, basic mathematical techniques and algorithms used to build useful applications. The study of computer graphics enables to develop algorithms for creating various Graphics applications.
Prerequisite: A sound knowledge of Mathematics and a programming language.
Course Outcomes: After the completion of the course the student will be able to:

CO\#	CO
CO1	Describe the applications and working principles of graphics devices (Cognitive Knowledge level: Understand)
CO2	Illustrate line drawing, circle drawing and polygon filling algorithms (Cognitive Knowledge level: Apply)
CO3	Demonstrate Geometric Representations and Transformations on 2D \& 3D objects (Cognitive Knowledge level: Apply)
CO4	Illustrate Line and Polygon Clipping algorithms and Projection algorithms. (Cognitive Knowledge level: Apply)
CO5	Summarize 3D viewing pipeline, 3D object representations (Cognitive Knowledge level: Understand)

Mapping of Course Outcomes with Program Outcomes

	PO	PO2	PO3	PO4	P05	P06	P07	PO8	PO9	PO1	PO11	PO1
1												

Abstract POs defined by National Board of Accreditation			
PO\#	Broad PO	PO\#	Broad PO
PO1	Engineering Knowledge	PO7	Environment and Sustainability
PO2	Problem Analysis	PO8	Ethics
PO3	Design/Development of Solutions	PO9	Individual and Team Work
PO4	Conduct Investigations of Complex Problems	PO10	Communication
PO5	Modern Tool Usage	PO11	Project Management and Finance
PO6	The Engineer and Society	PO12	Life long Learning

Assessment Pattern

Bloom's Category	Continuous Assessment Tests		End Semester Examination Marks (\%)
	Test 1 $\mathbf{(\%)}$	Test 2 $(\%)$	
Remember	$\mathbf{3 0}$	$\mathbf{3 0}$	$\mathbf{3 0}$
Understand	$\mathbf{3 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
Apply	$\mathbf{4 0}$	$\mathbf{4 0}$	
Analyze			
Evaluate			
Create			

Mark Distribution

Total Marks	CIE Marks	ESE Marks	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance
Continuous Assessment Tests (Average of Series Tests - 1\& 2)
Continuous Assessment Assignment

10 marks
25 marks
15 marks

Internal Examination Pattern: Each of the two internal examinations has to be conducted out of 50 marks. The first series test shall be preferably conducted after completing the first half of the syllabus and the second series test shall be preferably conducted after completing the remaining part of the syllabus. There will be two parts: Part A and Part B. Part A contains 5 questions (preferably, 2 questions each from the completed modules and 1 question from the partly completed module), having 3 marks for each question adding up to 15 marks for part A. Students should answer all questions from Part A. Part B contains 7 questions (preferably, 3 questions each from the
completed modules and 1 question from the partly completed module), each with 7 marks. Out of the 7 questions, a student should answer any 5 .

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions. Part B contains 2 full questions from each module of which student should answer any one full question. Each question can have maximum 2 sub-divisions and carries 14 marks.

Syllabus

Module - 1 (Introduction to Computer Graphics)

Basics and Applications of Computer Graphics, Video Display Devices, Refresh Cathode Ray Tubes, Raster Scan and Random Scan Displays. Graphical Input \& Output Devices - Flat Panel Displays, Hardcopy Output Devices, Physical Interactive Devices, Data Generation Devices.

Module - 2 (Algorithms, Filled Area Primitives)

Line Drawing algorithms- DDA, Bresenham's algorithm. Circle Drawing algorithms- Midpoint Circle generation algorithm, Bresenham's algorithm. Filled Area Primitives - Scan Line Polygon Filling, Boundary Filling and Flood Filling.

Module - 3 (Geometric Transformations - 2D and 3D)

Two Dimensional Transformations - Translation, Rotation, Scaling, Reflection and Shearing, Matrix Formulation and Concatenation of Transformations and Homogeneous Coordinates. Basic 3D Transformations.

Module - 4 (Clipping, Projections)

Window to Viewport Transformation. Cohen-Sutherland Line Clipping algorithm. SutherlandHodgeman Polygon Clipping algorithm. Three Dimensional viewing pipeline. ProjectionsParallel and Perspective projections- Vanishing Points.

Module - 5 (3D Object Representations)

3D Object Representations - Polygon Surfaces - Curved lines and surfaces- Quadric surfaces - Spline Representations - Cubic Spline Interpolation Methods-Bezier Curves and Surfaces - BSpline Curves and Surfaces, Sweep representation, Octrees.

Text Book

1. Donald Hearn and M. Pauline Baker, Computer Graphics, PHI, 2e, 1996

References

1. William M. Newman and Robert F. Sproull, Principles of Interactive Computer Graphics. McGraw Hill, 2001
2. Zhigang Xiang and Roy Plastock, Computer Graphics (Schaum's outline Series), McGraw Hill, 2019.
3. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing. Pearson, 4e, 2017

Sample Course Level Assessment Questions.
 Course Outcome 1 (CO1):

1. Compare the working principle of raster scan systems and random scan systems.
2. How much time is spent scanning across each row of pixels during screen refresh on a raster system with resolution of $1280 * 1024$ and a refresh rate of 60 frames per second?

Course Outcome 2 (CO2):

1. Rasterize the line with end points $(2,3)$ and $(5,8)$ using Bresenham's line drawing algorithm.
2. Explain how the 4 -connected area filling approach differs from 8 - connected area filling in boundary filling algorithm

Course Outcome 3 (CO3):

1. Rotate a triangle ABC 45 degree counter clockwise about the pivot point $(10,3)$, where the position vector of the coordinate ABC is given as $\mathrm{A}(4,1), \mathrm{B}(5,2)$ and $\mathrm{C}(4,3)$.
2. Given a clipping window $A(20,20), B(60,20), C(60,40)$ and $D(20,40)$. Using Cohen Sutherland algorithm, find the visible portion of the line segment joining the points $\mathrm{P}(40,80)$ and $\mathrm{Q}(120,30)$

Course Outcome 4(CO4):

1. Reflect a triangle ABC about the line $2 x-5 y+18=0$. The position vector of the coordinate ABC is given as
$\mathrm{A}(3,4), \mathrm{B}(6,9)$ and $\mathrm{C}(4,3)$.

Course Outcome 5 (CO5):

1. Explain quadric surfaces.
2. Summarize the cubic spline interpolation methods

Model Question paper

PART B Answer any one Question from each module. Each question carries 14 Marks			
11	a)	List the different Input and output components that are typically used with virtual reality systems.	(8)
	b)	Explain the differences between a general graphics system designed for a programmer and one designed for a specific application, such as architectural design?	(6)
		\square OR	
12	a)	Explain Physical Interactive Devices and Data Generation devices	(7)
	b)	Draw the architecture of raster scan display systems and explain its working principle.	(7)
13	a)	Write the boundary fill algorithm for filling a polygon using four connected and eight connected approaches	(7)
	b)	Rasterize the line segment from pixel coordinate $(1,1)$ to $(8,5)$ using Bresenham's line drawing algorithm	(7)
		OR	
14	a)	Use midpoint circle drawing algorithm to plot a circle whose radius $=20$ units and center is $(50,30)$	(6)
	b)	Explain how the 4-connected area filling approach differs from 8connected area filling in boundary filling algorithm.	(8)
15	a)	Scale a rectangle PQRS with a scaling factor 2 in X-direction and scaling factor 3 in Y-direction about the pivot point $\mathrm{P}(2,4)$, where the position vector of the coordinate $P Q R S$ is given as $P(2,4), Q(6,4)$ and $R(6,8)$ and $S(2,8)$.	(8)
	b)	Show that transformation matrix for a reflection about the line $y=x$ is equivalent to a reflection relative to the x axis followed by a counter clockwise rotation of 90 degree.	(6)
		OR	
16	a)	Reflect a triangle ABC about the line $2 \mathrm{x}-5 \mathrm{y}+18=0$. The position vector of the coordinate ABC is given as $\mathrm{A}(3,4), \mathrm{B}(6,9)$ and $\mathrm{C}(4,3)$.	(8)

	b)	Determine a sequence of basic transformations that are equivalent to scaling with respect to a pivot point other than origin.	(6)
17	a)	Explain the window to viewport coordinate transformation and also derive the scaling factors during the transformation	(6)
	b)	Explain Cohen-Sutherland line clipping algorithm. Use the algorithm to clip line $\operatorname{L1}(50,30)$ and $\operatorname{L2}(80,20)$ against a window lower left-hand corner $(50,10)$ and upper right-hand corner $(70,20)$.	(8)
		OR	
18	a)	Distinguish between cavalier and cabinet projections	(5)
	b)	Explain Sutherland-Hodgeman Polygon Clipping algorithm with suitable example	(9)
19	a)	Explain sweep representation in detail	(6)
	b)	Explain quadric surfaces.	(8)
		OR	
20	a)	Explain Bezier curves and surfaces.	(9)
	b)	Briefly explain octrees	(5)
		* * *	

Teaching Plan		
No	Topic	No. of Lectures (42)
	Module-1 (Introduction to Computer Graphics)	8
1.1	Basics and Applications of Computer Graphics, - Flat Panel Displays, Physical Interactive Devices, Data Generation Devices.	1
1.2	Video Display Devices, Refresh Cathode Ray Tubes, Raster Scan and Random Scan Displays.	1
1.3	Video Display Devices, Refresh Cathode Ray Tubes, Raster Scan and Random Scan Displays.	1
1.4	Graphical Input \& Output Devices	1
1.5	Graphical Input \& Output Devices	1
1.6	Hardcopy Output Devices	1
1.7	Hardcopy Output Devices	1
1.8	Physical Interactive Devices, Data Generation Devices.	1
	Module-2 (Algorithms, Filled Area Primitives)	11
2.1	Line Drawing algorithms- DDA	1
2.2	Bresenham's algorithm Fsto	1
2.3	Circle Drawing algorithms- Midpoint Circle generation algorithm	1
2.4	Circle Drawing algorithms- Midpoint Circle generation algorithm	1
2.5	Bresenham's algorithm	1
2.6	Bresenham's algorithm	1
2.7	Filled Area Primitives - Scan Line Polygon Filling	1
2.8	Filled Area Primitives - Scan Line Polygon Filling	1
2.9	Boundary Filling	1
2.10	Flood Filling	1
2.11	Flood Filling	1

	Module-3 (Geometric Transformations - 2D and 3D)	7
3.1	Two Dimensional Transformations - Translation	1
3.2	Rotation	1
3.3	Scaling	1
3.4	Reflection and Shearing \square	1
3.5	Matrix Formulation	1
3.6	Concatenation of Transformations and Homogeneous Coordinates	1
3.7	Basic 3D Transformations	1
	Module-4 (Clipping, Projections)	9
4.1	Window to Viewport Transformation.	1
4.2	Cohen-Sutherland Line Clipping algorithm.	1
4.3	Cohen-Sutherland Line Clipping algorithm.	1
4.4	Sutherland- Hodgeman Polygon Clipping algorithm.	1
4.5	Sutherland- Hodgeman Polygon Clipping algorithm.	1
4.6	Three Dimensional viewing pipeline.	1
4.7	Projections- Parallel and Perspective projections-	1
4.8	Projections- Parallel and Perspective projections	1
4.9	Vanishing Points	1
	Module-5 (3D Object Representations)	7
5.1	3D Object Representation-Polygon Surfaces	1
5.2	Curved lines and surfaces	1
5.3	Quadric surfaces	1
5.4	Spline Representations - Cubic Spline Interpolation Methods	1
5.5	Bezier Curves and Surfaces	1
5.6	B-Spline Curves and Surfaces	1
5.7	Sweep representation, Octrees	1

[^0]: V Ramana, $5^{\text {th }}$ Edition, Pearson

[^1]: ** Mandatory

